Progressive glycosylation of the haemagglutinin of avian influenza H5N1 modulates virus replication, virulence and chicken-to-chicken transmission without significant impact on antigenic drift Free

Abstract

Highly pathogenic H5N1 avian influenza virus (A/H5N1) devastated the poultry industry and continues to pose a pandemic threat. Studying the progressive genetic changes in A/H5N1 after long-term circulation in poultry may help us to better understand A/H5N1 biology in birds. A/H5N1 clade 2.2.1.1 antigenic drift viruses have been isolated from vaccinated commercial poultry in Egypt. They exhibit a peculiar stepwise accumulation of glycosylation sites (GS) in the haemagglutinin (HA) with viruses carrying, beyond the conserved 5 GS, additional GS at amino acid residues 72, 154, 236 and 273 resulting in 6, 7, 8 or 9 GS in the HA. Available information about the impact of glycosylation on virus fitness and pathobiology is mostly derived from mammalian models. Here, we generated recombinant viruses imitating the progressive acquisition of GS in HA and investigated their biological relevance and . Our results indicated that the accumulation of GS correlated with increased glycosylation, increased virus replication, neuraminidase activity, cell-to-cell spread and thermostability, however, strikingly, without significant impact on virus escape from neutralizing antibodies. , glycosylation modulated virus virulence, tissue tropism, replication and chicken-to-chicken transmission. Predominance in the field was towards viruses with hyperglycosylated HA. Together, progressive glycosylation of the HA may foster persistence of A/H5N1 by increasing replication, stability and bird-to-bird transmission without significant impact on antigenic drift.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000648
2016-12-16
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/12/3193.html?itemId=/content/journal/jgv/10.1099/jgv.0.000648&mimeType=html&fmt=ahah

References

  1. Abdelwhab E. M., Grund C., Aly M. M., Beer M., Harder T. C., Hafez H. M. 2011; Multiple dose vaccination with heterologous H5N2 vaccine: immune response and protection against variant clade 2.2.1 highly pathogenic avian influenza H5N1 in broiler breeder chickens. Vaccine 29:6219–6225 [View Article][PubMed]
    [Google Scholar]
  2. Abdelwhab E. M., Arafa A. S., Stech J., Grund C., Stech O., Graeber-Gerberding M., Beer M., Hassan M. K., Aly M. M. et al. 2012; Diversifying evolution of highly pathogenic H5N1 avian influenza virus in Egypt from 2006 to 2011. Virus Genes 45:14–23 [View Article][PubMed]
    [Google Scholar]
  3. Abdelwhab E. M., Hassan M. K., Abdel-Moneim A. S., Naguib M. M., Mostafa A., Hussein I. T., Arafa A., Erfan A. M., Kilany W. H. et al. 2016; Introduction and enzootic of A/H5N1 in Egypt: virus evolution, pathogenicity and vaccine efficacy ten years on. Infect Genet Evol 40:80–90 [View Article][PubMed]
    [Google Scholar]
  4. Arafa A., Suarez D., Kholosy S. G., Hassan M. K., Nasef S., Selim A., Dauphin G., Kim M., Yilma J. et al. 2012; Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation. Arch Virol 157:1931–1947 [View Article][PubMed]
    [Google Scholar]
  5. Baigent S. J., McCauley J. W. 2001; Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture. Virus Res 79:177–185 [View Article][PubMed]
    [Google Scholar]
  6. Breithaupt A., Kalthoff D., Dale J., Bairlein F., Beer M., Teifke J. P. 2011; Neurotropism in blackcaps (Sylvia atricapilla) and red-billed queleas (Quelea quelea) after highly pathogenic avian influenza virus H5N1 infection. Vet Pathol 48:924–932 [View Article][PubMed]
    [Google Scholar]
  7. Cattoli G., Milani A., Temperton N., Zecchin B., Buratin A., Molesti E., Aly M. M., Arafa A., Capua I. 2011; Antigenic drift in H5N1 avian influenza virus in poultry is driven by mutations in major antigenic sites of the hemagglutinin molecule analogous to those for human influenza virus. J Virol 85:8718–8724 [View Article][PubMed]
    [Google Scholar]
  8. Chen H., Bright R. A., Subbarao K., Smith C., Cox N. J., Katz J. M., Matsuoka Y. 2007; Polygenic virulence factors involved in pathogenesis of 1997 Hong Kong H5N1 influenza viruses in mice. Virus Res 128:159–163 [View Article][PubMed]
    [Google Scholar]
  9. Das S. R., Hensley S. E., David A., Schmidt L., Gibbs J. S., Puigbò P., Ince W. L., Bennink J. R., Yewdell J. W. 2011; Fitness costs limit influenza A virus hemagglutinin glycosylation as an immune evasion strategy. Proc Natl Acad Sci U S A 108:E1417E1422 [View Article][PubMed]
    [Google Scholar]
  10. Duvvuri V. R., Duvvuri B., Cuff W. R., Wu G. E., Wu J. 2009; Role of positive selection pressure on the evolution of H5N1 hemagglutinin. Genomics Proteomics Bioinformatics 7:47–56 [View Article][PubMed]
    [Google Scholar]
  11. Grund C., Abdelwhab E. M., Arafa A. S., Ziller M., Hassan M. K., Aly M. M., Hafez H. M., Harder T. C., Beer M. 2011; Highly pathogenic avian influenza virus H5N1 from Egypt escapes vaccine-induced immunity but confers clinical protection against a heterologous clade 2.2.1 Egyptian isolate. Vaccine 29:5567–5573 [View Article][PubMed]
    [Google Scholar]
  12. Hall T. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  13. Hebert D. N., Zhang J. X., Chen W., Foellmer B., Helenius A. 1997; The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J Cell Biol 139:613–623 [View Article][PubMed]
    [Google Scholar]
  14. Hoffmann E., Stech J., Guan Y., Webster R. G., Perez D. R. 2001; Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146:2275–2289 [View Article][PubMed]
    [Google Scholar]
  15. Hulse D. J., Webster R. G., Russell R. J., Perez D. R. 2004; Molecular determinants within the surface proteins involved in the pathogenicity of H5N1 influenza viruses in chickens. J Virol 78:9954–9964 [View Article][PubMed]
    [Google Scholar]
  16. Iqbal M., Essen S. C., Xiao H., Brookes S. M., Brown I. H., McCauley J. W. 2012; Selection of variant viruses during replication and transmission of H7N1 viruses in chickens and turkeys. Virology 433:282–295 [View Article][PubMed]
    [Google Scholar]
  17. Katoh K., Standley D. M. 2014; MAFFT: iterative refinement and additional methods. Methods Mol Biol 1079:131–146 [View Article][PubMed]
    [Google Scholar]
  18. Kim J. I., Park M. S. 2012; N-Linked glycosylation in the hemagglutinin of influenza A viruses. Yonsei Med J 53:886–893 [View Article][PubMed]
    [Google Scholar]
  19. Klenk H. D., Wagner R., Heuer D., Wolff T. 2002; Importance of hemagglutinin glycosylation for the biological functions of influenza virus. Virus Res 82:73–75 [View Article][PubMed]
    [Google Scholar]
  20. Li Y., Zhang X., Xu Q., Fu Q., Zhu Y., Chen S., Peng D., Liu X. 2013; Characterisation and haemagglutinin gene epitope mapping of a variant strain of H5N1 subtype avian influenza virus. Vet Microbiol 162:614–622 [View Article][PubMed]
    [Google Scholar]
  21. Matrosovich M., Zhou N., Kawaoka Y., Webster R. 1999; The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol 73:1146–1155[PubMed]
    [Google Scholar]
  22. Matsuoka Y., Swayne D. E., Thomas C., Rameix-Welti M. A., Naffakh N., Warnes C., Altholtz M., Donis R., Subbarao K. 2009; Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice. J Virol 83:4704–4708 [View Article][PubMed]
    [Google Scholar]
  23. Mishin V. P., Novikov D., Hayden F. G., Gubareva L. V. 2005; Effect of hemagglutinin glycosylation on influenza virus susceptibility to neuraminidase inhibitors. J Virol 79:12416–12424 [View Article][PubMed]
    [Google Scholar]
  24. Mitnaul L. J., Matrosovich M. N., Castrucci M. R., Tuzikov A. B., Bovin N. V., Kobasa D., Kawaoka Y. 2000; Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J Virol 74:6015–6020 [View Article][PubMed]
    [Google Scholar]
  25. Nguyen L. T., Schmidt H. A., von Haeseler A., Minh B. Q. 2015; IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274 [View Article][PubMed]
    [Google Scholar]
  26. OIE 2015; Chapter 2.3.4. — Avian influenza. Available at http://www.oie.int/fileadmin/Home/fr/Health_standards/tahm/2.03.04_AI.pdf
  27. Ohuchi M., Ohuchi R., Feldmann A., Klenk H. D. 1997a; Regulation of receptor binding affinity of influenza virus hemagglutinin by its carbohydrate moiety. J Virol 71:8377–8384[PubMed]
    [Google Scholar]
  28. Ohuchi R., Ohuchi M., Garten W., Klenk H. D. 1997b; Oligosaccharides in the stem region maintain the influenza virus hemagglutinin in the metastable form required for fusion activity. J Virol 71:3719–3725[PubMed]
    [Google Scholar]
  29. Owen R. E., Yamada E., Thompson C. I., Phillipson L. J., Thompson C., Taylor E., Zambon M., Osborn H. M., Barclay W. S. et al. 2007; Alterations in receptor binding properties of recent human influenza H3N2 viruses are associated with reduced natural killer cell lysis of infected cells. J Virol 81:11170–11178 [View Article][PubMed]
    [Google Scholar]
  30. Schuy W., Will C., Kuroda K., Scholtissek C., Garten W., Klenk H. D. 1986; Mutations blocking the transport of the influenza virus hemagglutinin between the rough endoplasmic reticulum and the Golgi apparatus. EMBO J 5:2831–2836[PubMed]
    [Google Scholar]
  31. Stech J., Stech O., Herwig A., Altmeppen H., Hundt J., Gohrbandt S., Kreibich A., Weber S., Klenk H. D. et al. 2008; Rapid and reliable universal cloning of influenza A virus genes by target-primed plasmid amplification. Nucleic Acids Res 36:e139 [View Article][PubMed]
    [Google Scholar]
  32. Swayne D. E., Pavade G., Hamilton K., Vallat B., Miyagishima K. 2011; Assessment of national strategies for control of high-pathogenicity avian influenza and low-pathogenicity notifiable avian influenza in poultry, with emphasis on vaccines and vaccination. Rev Sci Tech 30:839–870[PubMed]
    [Google Scholar]
  33. Tate M. D., Job E. R., Deng Y. M., Gunalan V., Maurer-Stroh S., Reading P. C. 2014; Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses 6:1294–1316 [View Article][PubMed]
    [Google Scholar]
  34. Thompson C. I., Barclay W. S., Zambon M. C. 2004; Changes in in vitro susceptibility of influenza A H3N2 viruses to a neuraminidase inhibitor drug during evolution in the human host. J Antimicrob Chemother 53:759–765 [View Article][PubMed]
    [Google Scholar]
  35. Wagner R., Wolff T., Herwig A., Pleschka S., Klenk H. D. 2000; Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. J Virol 74:6316–6323 [View Article][PubMed]
    [Google Scholar]
  36. Wagner R., Heuer D., Wolff T., Herwig A., Klenk H. D. 2002; N-Glycans attached to the stem domain of haemagglutinin efficiently regulate influenza A virus replication. J Gen Virol 83:601–609 [View Article][PubMed]
    [Google Scholar]
  37. Wang C. C., Chen J. R., Tseng Y. C., Hsu C. H., Hung Y. F., Chen S. W., Chen C. M., Khoo K. H., Cheng T. J. et al. 2009; Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc Natl Acad Sci U S A 106:18137–18142 [View Article][PubMed]
    [Google Scholar]
  38. Webster R. G., Kawaoka Y., Bean W. J. 1986; Molecular changes in A/chicken/Pennsylvania/83 (H5N2) influenza virus associated with acquisition of virulence. Virology 149:165–173 [View Article][PubMed]
    [Google Scholar]
  39. Webster R. G., Govorkova E. A. 2014; Continuing challenges in influenza. Ann N Y Acad Sci 1323:115–139 [View Article][PubMed]
    [Google Scholar]
  40. World Health Organization/World Organisation for Animal Health/Food and Agriculture Organization (WHO/OIE/FAO) H5N1 Evolution Working Group 2014; Revised and updated nomenclature for highly pathogenic avian influenza A (H5N1) viruses. Influenza Other Respir Viruses 8:384–388 [View Article][PubMed]
    [Google Scholar]
  41. Yen H. L., Aldridge J. R., Boon A. C., Ilyushina N. A., Salomon R., Hulse-Post D. J., Marjuki H., Franks J., Boltz D. A. et al. 2009; Changes in H5N1 influenza virus hemagglutinin receptor binding domain affect systemic spread. Proc Natl Acad Sci U S A 106:286–291 [View Article][PubMed]
    [Google Scholar]
  42. Zhang X., Chen S., Jiang Y., Huang K., Huang J., Yang D., Zhu J., Zhu Y., Shi S. et al. 2015a; Hemagglutinin glycosylation modulates the pathogenicity and antigenicity of the H5N1 avian influenza virus. Vet Microbiol 175:244–256 [View Article]
    [Google Scholar]
  43. Zhang X., Wang X., Liu X., Yang D., Chen S., Peng D., Zhu J. 2015b; Role of stem glycans attached to haemagglutinin in the biological characteristics of H5N1 avian influenza virus. J Gen Virol 96:1248–1257 [View Article]
    [Google Scholar]
  44. Zhang Y., Zhu J., Li Y., Bradley K. C., Cao J., Chen H., Jin M., Zhou H. 2013; Glycosylation on hemagglutinin affects the virulence and pathogenicity of pandemic H1N1/2009 influenza A virus in mice. PLoS One 8:e61397 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000648
Loading
/content/journal/jgv/10.1099/jgv.0.000648
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed