1887

Abstract

Highly pathogenic H5N1 avian influenza virus (A/H5N1) devastated the poultry industry and continues to pose a pandemic threat. Studying the progressive genetic changes in A/H5N1 after long-term circulation in poultry may help us to better understand A/H5N1 biology in birds. A/H5N1 clade 2.2.1.1 antigenic drift viruses have been isolated from vaccinated commercial poultry in Egypt. They exhibit a peculiar stepwise accumulation of glycosylation sites (GS) in the haemagglutinin (HA) with viruses carrying, beyond the conserved 5 GS, additional GS at amino acid residues 72, 154, 236 and 273 resulting in 6, 7, 8 or 9 GS in the HA. Available information about the impact of glycosylation on virus fitness and pathobiology is mostly derived from mammalian models. Here, we generated recombinant viruses imitating the progressive acquisition of GS in HA and investigated their biological relevance in vitro and in vivo. Our in vitro results indicated that the accumulation of GS correlated with increased glycosylation, increased virus replication, neuraminidase activity, cell-to-cell spread and thermostability, however, strikingly, without significant impact on virus escape from neutralizing antibodies. In vivo, glycosylation modulated virus virulence, tissue tropism, replication and chicken-to-chicken transmission. Predominance in the field was towards viruses with hyperglycosylated HA. Together, progressive glycosylation of the HA may foster persistence of A/H5N1 by increasing replication, stability and bird-to-bird transmission without significant impact on antigenic drift.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000648
2016-12-16
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/12/3193.html?itemId=/content/journal/jgv/10.1099/jgv.0.000648&mimeType=html&fmt=ahah

References

  1. Abdelwhab E. M., Grund C., Aly M. M., Beer M., Harder T. C., Hafez H. M..( 2011;). Multiple dose vaccination with heterologous H5N2 vaccine: immune response and protection against variant clade 2.2.1 highly pathogenic avian influenza H5N1 in broiler breeder chickens. . Vaccine29:6219–6225. [CrossRef][PubMed]
    [Google Scholar]
  2. Abdelwhab E. M., Arafa A. S., Stech J., Grund C., Stech O., Graeber-Gerberding M., Beer M., Hassan M. K., Aly M. M. et al.( 2012;). Diversifying evolution of highly pathogenic H5N1 avian influenza virus in Egypt from 2006 to 2011. . Virus Genes45:14–23. [CrossRef][PubMed]
    [Google Scholar]
  3. Abdelwhab E. M., Hassan M. K., Abdel-Moneim A. S., Naguib M. M., Mostafa A., Hussein I. T., Arafa A., Erfan A. M., Kilany W. H. et al.( 2016;). Introduction and enzootic of A/H5N1 in Egypt: virus evolution, pathogenicity and vaccine efficacy ten years on. . Infect Genet Evol40:80–90. [CrossRef][PubMed]
    [Google Scholar]
  4. Arafa A., Suarez D., Kholosy S. G., Hassan M. K., Nasef S., Selim A., Dauphin G., Kim M., Yilma J. et al.( 2012;). Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation. . Arch Virol157:1931–1947. [CrossRef][PubMed]
    [Google Scholar]
  5. Baigent S. J., McCauley J. W..( 2001;). Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture. . Virus Res79:177–185. [CrossRef][PubMed]
    [Google Scholar]
  6. Breithaupt A., Kalthoff D., Dale J., Bairlein F., Beer M., Teifke J. P..( 2011;). Neurotropism in blackcaps (Sylvia atricapilla) and red-billed queleas (Quelea quelea) after highly pathogenic avian influenza virus H5N1 infection. . Vet Pathol48:924–932. [CrossRef][PubMed]
    [Google Scholar]
  7. Cattoli G., Milani A., Temperton N., Zecchin B., Buratin A., Molesti E., Aly M. M., Arafa A., Capua I..( 2011;). Antigenic drift in H5N1 avian influenza virus in poultry is driven by mutations in major antigenic sites of the hemagglutinin molecule analogous to those for human influenza virus. . J Virol85:8718–8724. [CrossRef][PubMed]
    [Google Scholar]
  8. Chen H., Bright R. A., Subbarao K., Smith C., Cox N. J., Katz J. M., Matsuoka Y..( 2007;). Polygenic virulence factors involved in pathogenesis of 1997 Hong Kong H5N1 influenza viruses in mice. . Virus Res128:159–163. [CrossRef][PubMed]
    [Google Scholar]
  9. Das S. R., Hensley S. E., David A., Schmidt L., Gibbs J. S., Puigbò P., Ince W. L., Bennink J. R., Yewdell J. W..( 2011;). Fitness costs limit influenza A virus hemagglutinin glycosylation as an immune evasion strategy. . Proc Natl Acad Sci U S A108:E1417E1422. [CrossRef][PubMed]
    [Google Scholar]
  10. Duvvuri V. R., Duvvuri B., Cuff W. R., Wu G. E., Wu J..( 2009;). Role of positive selection pressure on the evolution of H5N1 hemagglutinin. . Genomics Proteomics Bioinformatics7:47–56. [CrossRef][PubMed]
    [Google Scholar]
  11. Grund C., Abdelwhab E. M., Arafa A. S., Ziller M., Hassan M. K., Aly M. M., Hafez H. M., Harder T. C., Beer M..( 2011;). Highly pathogenic avian influenza virus H5N1 from Egypt escapes vaccine-induced immunity but confers clinical protection against a heterologous clade 2.2.1 Egyptian isolate. . Vaccine29:5567–5573. [CrossRef][PubMed]
    [Google Scholar]
  12. Hall T..( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser41:95–98.
    [Google Scholar]
  13. Hebert D. N., Zhang J. X., Chen W., Foellmer B., Helenius A..( 1997;). The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. . J Cell Biol139:613–623. [CrossRef][PubMed]
    [Google Scholar]
  14. Hoffmann E., Stech J., Guan Y., Webster R. G., Perez D. R..( 2001;). Universal primer set for the full-length amplification of all influenza A viruses. . Arch Virol146:2275–2289. [CrossRef][PubMed]
    [Google Scholar]
  15. Hulse D. J., Webster R. G., Russell R. J., Perez D. R..( 2004;). Molecular determinants within the surface proteins involved in the pathogenicity of H5N1 influenza viruses in chickens. . J Virol78:9954–9964. [CrossRef][PubMed]
    [Google Scholar]
  16. Iqbal M., Essen S. C., Xiao H., Brookes S. M., Brown I. H., McCauley J. W..( 2012;). Selection of variant viruses during replication and transmission of H7N1 viruses in chickens and turkeys. . Virology433:282–295. [CrossRef][PubMed]
    [Google Scholar]
  17. Katoh K., Standley D. M..( 2014;). MAFFT: iterative refinement and additional methods. . Methods Mol Biol1079:131–146. [CrossRef][PubMed]
    [Google Scholar]
  18. Kim J. I., Park M. S..( 2012;). N-Linked glycosylation in the hemagglutinin of influenza A viruses. . Yonsei Med J53:886–893. [CrossRef][PubMed]
    [Google Scholar]
  19. Klenk H. D., Wagner R., Heuer D., Wolff T..( 2002;). Importance of hemagglutinin glycosylation for the biological functions of influenza virus. . Virus Res82:73–75. [CrossRef][PubMed]
    [Google Scholar]
  20. Li Y., Zhang X., Xu Q., Fu Q., Zhu Y., Chen S., Peng D., Liu X..( 2013;). Characterisation and haemagglutinin gene epitope mapping of a variant strain of H5N1 subtype avian influenza virus. . Vet Microbiol162:614–622. [CrossRef][PubMed]
    [Google Scholar]
  21. Matrosovich M., Zhou N., Kawaoka Y., Webster R..( 1999;). The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. . J Virol73:1146–1155.[PubMed]
    [Google Scholar]
  22. Matsuoka Y., Swayne D. E., Thomas C., Rameix-Welti M. A., Naffakh N., Warnes C., Altholtz M., Donis R., Subbarao K..( 2009;). Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice. . J Virol83:4704–4708. [CrossRef][PubMed]
    [Google Scholar]
  23. Mishin V. P., Novikov D., Hayden F. G., Gubareva L. V..( 2005;). Effect of hemagglutinin glycosylation on influenza virus susceptibility to neuraminidase inhibitors. . J Virol79:12416–12424. [CrossRef][PubMed]
    [Google Scholar]
  24. Mitnaul L. J., Matrosovich M. N., Castrucci M. R., Tuzikov A. B., Bovin N. V., Kobasa D., Kawaoka Y..( 2000;). Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. . J Virol74:6015–6020. [CrossRef][PubMed]
    [Google Scholar]
  25. Nguyen L. T., Schmidt H. A., von Haeseler A., Minh B. Q..( 2015;). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. . Mol Biol Evol32:268–274. [CrossRef][PubMed]
    [Google Scholar]
  26. OIE( 2015;). Chapter 2.3.4. — Avian influenza. . Available at http://www.oie.int/fileadmin/Home/fr/Health_standards/tahm/2.03.04_AI.pdf.
  27. Ohuchi M., Ohuchi R., Feldmann A., Klenk H. D..( 1997a;). Regulation of receptor binding affinity of influenza virus hemagglutinin by its carbohydrate moiety. . J Virol71:8377–8384.[PubMed]
    [Google Scholar]
  28. Ohuchi R., Ohuchi M., Garten W., Klenk H. D..( 1997b;). Oligosaccharides in the stem region maintain the influenza virus hemagglutinin in the metastable form required for fusion activity. . J Virol71:3719–3725.[PubMed]
    [Google Scholar]
  29. Owen R. E., Yamada E., Thompson C. I., Phillipson L. J., Thompson C., Taylor E., Zambon M., Osborn H. M., Barclay W. S. et al.( 2007;). Alterations in receptor binding properties of recent human influenza H3N2 viruses are associated with reduced natural killer cell lysis of infected cells. . J Virol81:11170–11178. [CrossRef][PubMed]
    [Google Scholar]
  30. Schuy W., Will C., Kuroda K., Scholtissek C., Garten W., Klenk H. D..( 1986;). Mutations blocking the transport of the influenza virus hemagglutinin between the rough endoplasmic reticulum and the Golgi apparatus. . EMBO J5:2831–2836.[PubMed]
    [Google Scholar]
  31. Stech J., Stech O., Herwig A., Altmeppen H., Hundt J., Gohrbandt S., Kreibich A., Weber S., Klenk H. D. et al.( 2008;). Rapid and reliable universal cloning of influenza A virus genes by target-primed plasmid amplification. . Nucleic Acids Res36:e139. [CrossRef][PubMed]
    [Google Scholar]
  32. Swayne D. E., Pavade G., Hamilton K., Vallat B., Miyagishima K..( 2011;). Assessment of national strategies for control of high-pathogenicity avian influenza and low-pathogenicity notifiable avian influenza in poultry, with emphasis on vaccines and vaccination. . Rev Sci Tech30:839–870.[PubMed]
    [Google Scholar]
  33. Tate M. D., Job E. R., Deng Y. M., Gunalan V., Maurer-Stroh S., Reading P. C..( 2014;). Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. . Viruses6:1294–1316. [CrossRef][PubMed]
    [Google Scholar]
  34. Thompson C. I., Barclay W. S., Zambon M. C..( 2004;). Changes in in vitro susceptibility of influenza A H3N2 viruses to a neuraminidase inhibitor drug during evolution in the human host. . J Antimicrob Chemother53:759–765. [CrossRef][PubMed]
    [Google Scholar]
  35. Wagner R., Wolff T., Herwig A., Pleschka S., Klenk H. D..( 2000;). Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. . J Virol74:6316–6323. [CrossRef][PubMed]
    [Google Scholar]
  36. Wagner R., Heuer D., Wolff T., Herwig A., Klenk H. D..( 2002;). N-Glycans attached to the stem domain of haemagglutinin efficiently regulate influenza A virus replication. . J Gen Virol83:601–609. [CrossRef][PubMed]
    [Google Scholar]
  37. Wang C. C., Chen J. R., Tseng Y. C., Hsu C. H., Hung Y. F., Chen S. W., Chen C. M., Khoo K. H., Cheng T. J. et al.( 2009;). Glycans on influenza hemagglutinin affect receptor binding and immune response. . Proc Natl Acad Sci U S A106:18137–18142. [CrossRef][PubMed]
    [Google Scholar]
  38. Webster R. G., Kawaoka Y., Bean W. J..( 1986;). Molecular changes in A/chicken/Pennsylvania/83 (H5N2) influenza virus associated with acquisition of virulence. . Virology149:165–173. [CrossRef][PubMed]
    [Google Scholar]
  39. Webster R. G., Govorkova E. A..( 2014;). Continuing challenges in influenza. . Ann N Y Acad Sci1323:115–139. [CrossRef][PubMed]
    [Google Scholar]
  40. World Health Organization/World Organisation for Animal Health/Food and Agriculture Organization (WHO/OIE/FAO) H5N1 Evolution Working Group( 2014;). Revised and updated nomenclature for highly pathogenic avian influenza A (H5N1) viruses. . Influenza Other Respir Viruses8:384–388. [CrossRef][PubMed]
    [Google Scholar]
  41. Yen H. L., Aldridge J. R., Boon A. C., Ilyushina N. A., Salomon R., Hulse-Post D. J., Marjuki H., Franks J., Boltz D. A. et al.( 2009;). Changes in H5N1 influenza virus hemagglutinin receptor binding domain affect systemic spread. . Proc Natl Acad Sci U S A106:286–291. [CrossRef][PubMed]
    [Google Scholar]
  42. Zhang X., Chen S., Jiang Y., Huang K., Huang J., Yang D., Zhu J., Zhu Y., Shi S. et al.( 2015a;). Hemagglutinin glycosylation modulates the pathogenicity and antigenicity of the H5N1 avian influenza virus. . Vet Microbiol175:244–256. [CrossRef]
    [Google Scholar]
  43. Zhang X., Wang X., Liu X., Yang D., Chen S., Peng D., Zhu J..( 2015b;). Role of stem glycans attached to haemagglutinin in the biological characteristics of H5N1 avian influenza virus. . J Gen Virol96:1248–1257. [CrossRef]
    [Google Scholar]
  44. Zhang Y., Zhu J., Li Y., Bradley K. C., Cao J., Chen H., Jin M., Zhou H..( 2013;). Glycosylation on hemagglutinin affects the virulence and pathogenicity of pandemic H1N1/2009 influenza A virus in mice. . PLoS One8:e61397. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000648
Loading
/content/journal/jgv/10.1099/jgv.0.000648
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error