1887

Abstract

We report the discovery of a novel bocaparvovirus, bat bocaparvovirus (BtBoV), in one spleen, four respiratory and 61 alimentary samples from bats of six different species belonging to three families, Hipposideridae, Rhinolophidae and Vespertilionidae. BtBoV showed a higher detection rate in alimentary samples of Rhinolophus sinicus (5.7 %) than those of other bat species (0.43–1.59 %), supporting R. sinicus as the primary reservoir and virus spillover to accidental bat species. BtBoV peaked during the lactating season of R. sinicus, and it was more frequently detected among female than male adult bats (P<0.05), and among lactating than non-lactating female bats (P<0.0001). Positive BtBoV detection was associated with lower body weight in lactating bats (P<0.05). Ten nearly complete BtBoV genomes from three bat species revealed a unique large ORF1 spanning NS1 and NP1 in eight genomes and conserved splicing signals leading to multiple proteins, as well as a unique substitution in the conserved replication initiator motif within NS1. BtBoV was phylogenetically distantly related to known bocaparvoviruses with ≤57.3 % genome identities, supporting BtBoV as a novel species. Ms-BtBoV from Miniopterus schreibersii and Hp-BtBoV from Hipposideros pomona demonstrated 97.2–99.9 % genome identities with Rs-BtBoVs from R. sinicus, supporting infection of different bat species by a single BtBoV species. Rs-BtBoV_str15 represents the first bat parvovirus genome with non-coding regions sequenced, which suggested the presence of head-to-tail genomic concatamers or episomal forms of the genome. This study represents the first to describe interspecies transmission in BoVs. The high detection rates in lactating female and juvenile bats suggest possible vertical transmission of BtBoV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000645
2016-12-16
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/12/3345.html?itemId=/content/journal/jgv/10.1099/jgv.0.000645&mimeType=html&fmt=ahah

References

  1. Adlhoch C., Kaiser M., Ellerbrok H., Pauli G..( 2010;). High prevalence of porcine Hokovirus in German wild boar populations. . Virol J 7: 171. [CrossRef] [PubMed]
    [Google Scholar]
  2. Allander T., Tammi M. T., Eriksson M., Bjerkner A., Tiveljung-Lindell A., Andersson B..( 2005;). Cloning of a human parvovirus by molecular screening of respiratory tract samples. . Proc Natl Acad Sci U S A 102: 12891–12896. [CrossRef] [PubMed]
    [Google Scholar]
  3. Arthur J. L., Higgins G. D., Davidson G. P., Givney R. C., Ratcliff R. M..( 2009;). A novel bocavirus associated with acute gastroenteritis in Australian children. . PLoS Pathog 5: e1000391. [CrossRef] [PubMed]
    [Google Scholar]
  4. Beigi R. H., Wiesenfeld H. C., Landers D. V., Simhan H. N..( 2008;). High rate of severe fetal outcomes associated with maternal parvovirus b19 infection in pregnancy. . Infect Dis Obstet Gynecol 2008: 524601. [CrossRef] [PubMed]
    [Google Scholar]
  5. Binn L. N., Lazar E. C., Eddy G. A., Kajima M..( 1970;). Recovery and characterization of a minute virus of canines. . Infect Immun 1: 503–508.[PubMed]
    [Google Scholar]
  6. Blomström A. L., Belák S., Fossum C., McKillen J., Allan G., Wallgren P., Berg M..( 2009;). Detection of a novel porcine boca-like virus in the background of porcine circovirus type 2 induced postweaning multisystemic wasting syndrome. . Virus Res 146: 125–129. [CrossRef] [PubMed]
    [Google Scholar]
  7. Brunak S., Engelbrecht J., Knudsen S..( 1991;). Prediction of human mRNA donor and acceptor sites from the DNA sequence. . J Mol Biol 220: 49–65. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cadar D., Cságola A., Lorincz M., Tombácz K., Spînu M., Tuboly T..( 2011;). Distribution and genetic diversity of porcine hokovirus in wild boars. . Arch Virol 156: 2233–2239. [CrossRef] [PubMed]
    [Google Scholar]
  9. Campanella J. J., Bitincka L., Smalley J..( 2003;). MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. . BMC Bioinformatics 4: 29. [CrossRef] [PubMed]
    [Google Scholar]
  10. Canuti M., Eis-Huebinger A. M., Deijs M., de Vries M., Drexler J. F., Oppong S. K., Müller M. A., Klose S. M., Wellinghausen N. et al.( 2011;). Two novel parvoviruses in frugivorous New and Old World bats. . PLoS One 6: e29140. [CrossRef] [PubMed]
    [Google Scholar]
  11. Carmichael L. E., Schlafer D. H., Hashimoto A..( 1991;). Pathogenicity of minute virus of canines (MVC) for the canine fetus. . Cornell Vet 81: 151–171.[PubMed]
    [Google Scholar]
  12. Carmichael L. E., Schlafer D. H., Hashimoto A..( 1994;). Minute virus of canines (MVC, canine parvovirus type-1): pathogenicity for pups and seroprevalence estimate. . J Vet Diagn Invest 6: 165–174. [CrossRef] [PubMed]
    [Google Scholar]
  13. Castellanos M., Pérez R., Rodríguez-Huete A., Grueso E., Almendral J. M., Mateu M. G..( 2013;). A slender tract of glycine residues is required for translocation of the VP2 protein N-terminal domain through the parvovirus MVM capsid channel to initiate infection. . Biochem J 455: 87–94. [CrossRef] [PubMed]
    [Google Scholar]
  14. Chang S. F., Sgro J. Y., Parrish C. R..( 1992;). Multiple amino acids in the capsid structure of canine parvovirus coordinately determine the canine host range and specific antigenic and hemagglutination properties. . J Virol 66: 6858–6867.[PubMed]
    [Google Scholar]
  15. Chapman M. S., Rossmann M. G..( 1993;). Structure, sequence, and function correlations among parvoviruses. . Virology 194: 491–508. [CrossRef] [PubMed]
    [Google Scholar]
  16. Chen K. C., Shull B. C., Moses E. A., Lederman M., Stout E. R., Bates R. C..( 1986;). Complete nucleotide sequence and genome organization of bovine parvovirus. . J Virol 60: 1085–1097.[PubMed]
    [Google Scholar]
  17. Chen K. C., Shull B. C., Lederman M., Stout E. R., Bates R. C..( 1988;). Analysis of the termini of the DNA of bovine parvovirus: demonstration of sequence inversion at the left terminus and its implication for the replication model. . J Virol 62: 3807–3813.[PubMed]
    [Google Scholar]
  18. Chen K. C., Tyson J. J., Lederman M., Stout E. R., Bates R. C..( 1989;). A kinetic hairpin transfer model for parvoviral DNA replication. . J Mol Biol 208: 283–296. [CrossRef] [PubMed]
    [Google Scholar]
  19. Chen A. Y., Cheng F., Lou S., Luo Y., Liu Z., Delwart E., Pintel D., Qiu J..( 2010;). Characterization of the gene expression profile of human bocavirus. . Virology 403: 145–154. [CrossRef] [PubMed]
    [Google Scholar]
  20. Cheng W. X., Li J. S., Huang C. P., Yao D. P., Liu N., Cui S. X., Jin Y., Duan Z. J..( 2010;). Identification and nearly full-length genome characterization of novel porcine bocaviruses. . PLoS One 5: e13583. [CrossRef] [PubMed]
    [Google Scholar]
  21. Coleman G. L., Jacoby R. O., Bhatt P. N., Smith A. L., Jonas A. M..( 1983;). Naturally occurring lethal parvovirus infection of juvenile and young-adult rats. . Vet Pathol 20: 49–56. [CrossRef] [PubMed]
    [Google Scholar]
  22. Cotmore S. F., Agbandje-McKenna M., Chiorini J. A., Mukha D. V., Pintel D. J., Qiu J., Soderlund-Venermo M., Tattersall P., Tijssen P. et al.( 2014;). The family Parvoviridae. . Arch Virol 159: 1239–1247. [CrossRef] [PubMed]
    [Google Scholar]
  23. Csiza C. K., Scott F. W., De Lahunta A., Gillespie J. H..( 1971;). Pathogenesis of feline panleukopenia virus in susceptible newborn kittens I. Clinical signs, hematology, serology, and virology. . Infect Immun 3: 833–837.[PubMed]
    [Google Scholar]
  24. Fasina O. O., Dong Y., Pintel D. J..( 2015;). NP1 protein of the Bocaparvovirus minute virus of canines controls access to the viral capsid genes via its role in RNA processing. . J Virol 90: 1718–1728.[CrossRef]
    [Google Scholar]
  25. Fryer J. F., Kapoor A., Minor P. D., Delwart E., Baylis S. A..( 2006;). Novel parvovirus and related variant in human plasma. . Emerg Infect Dis 12: 151–154.[CrossRef]
    [Google Scholar]
  26. Fryer J. F., Delwart E., Hecht F. M., Bernardin F., Jones M. S., Shah N., Baylis S. A..( 2007;). Frequent detection of the parvoviruses, PARV4 and PARV5, in plasma from blood donors and symptomatic individuals. . Transfusion 47: 1054–1061. [CrossRef] [PubMed]
    [Google Scholar]
  27. Gratacós E., Torres P. J., Vidal J., Antolín E., Costa J., Jiménez de Anta M. T., Cararach V., Alonso P. L., Fortuny A..( 1995;). The incidence of human parvovirus B19 infection during pregnancy and its impact on perinatal outcome. . J Infect Dis 171: 1360–1363. [CrossRef] [PubMed]
    [Google Scholar]
  28. He B., Li Z., Yang F., Zheng J., Feng Y., Guo H., Li Y., Wang Y., Su N. et al.( 2013;). Virome profiling of bats from Myanmar by metagenomic analysis of tissue samples reveals more novel mammalian viruses. . PLoS One 8: e61950. [CrossRef] [PubMed]
    [Google Scholar]
  29. Hebsgaard S. M., Korning P. G., Tolstrup N., Engelbrecht J., Rouzé P., Brunak S..( 1996;). Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. . Nucleic Acids Res 24: 3439–3452. [CrossRef] [PubMed]
    [Google Scholar]
  30. Hoelzer K., Shackelton L. A., Holmes E. C., Parrish C. R..( 2008;). Within-host genetic diversity of endemic and emerging parvoviruses of dogs and cats. . J Virol 82: 11096–11105. [CrossRef] [PubMed]
    [Google Scholar]
  31. Hogan A., Faust E. A..( 1986;). Nonhomologous recombination in the parvovirus chromosome: role for a CTATTTCT motif. . Mol Cell Biol 6: 3005–3009. [CrossRef] [PubMed]
    [Google Scholar]
  32. Huang Q., Deng X., Yan Z., Cheng F., Luo Y., Shen W., Lei-Butters D. C., Chen A. Y., Li Y. et al.( 2012;). Establishment of a reverse genetics system for studying human bocavirus in human airway epithelia. . PLoS Pathog 8: e1002899. [CrossRef] [PubMed]
    [Google Scholar]
  33. Ilyina T. V., Koonin E. V..( 1992;). Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. . Nucleic Acids Res 20: 3279–3285. [CrossRef] [PubMed]
    [Google Scholar]
  34. Jones M. S., Kapoor A., Lukashov V. V., Simmonds P., Hecht F., Delwart E..( 2005;). New DNA viruses identified in patients with acute viral infection syndrome. . J Virol 79: 8230–8236. [CrossRef] [PubMed]
    [Google Scholar]
  35. Jordan E. K., Sever J. L..( 1994;). Fetal damage caused by parvoviral infections. . Reprod Toxicol 8: 161–189. [CrossRef] [PubMed]
    [Google Scholar]
  36. Kapoor A., Slikas E., Simmonds P., Chieochansin T., Naeem A., Shaukat S., Alam M. M., Sharif S., Angez M. et al.( 2009;). A newly identified bocavirus species in human stool. . J Infect Dis 199: 196–200. [CrossRef] [PubMed]
    [Google Scholar]
  37. Kapoor A., Mehta N., Esper F., Poljsak-Prijatelj M., Quan P. L., Qaisar N., Delwart E., Lipkin W. I..( 2010a;). Identification and characterization of a new bocavirus species in gorillas. . PLoS One 5: e11948. [CrossRef]
    [Google Scholar]
  38. Kapoor A., Simmonds P., Slikas E., Li L., Bodhidatta L., Sethabutr O., Triki H., Bahri O., Oderinde B. S. et al.( 2010b;). Human bocaviruses are highly diverse, dispersed, recombination prone, and prevalent in enteric infections. . J Infect Dis 201: 1633–1643. [CrossRef]
    [Google Scholar]
  39. Kapoor A., Hornig M., Asokan A., Williams B., Henriquez J. A., Lipkin W. I..( 2011;). Bocavirus episome in infected human tissue contains non-identical termini. . PLoS One 6: e21362. [CrossRef] [PubMed]
    [Google Scholar]
  40. Kapoor A., Mehta N., Dubovi E. J., Simmonds P., Govindasamy L., Medina J. L., Street C., Shields S., Lipkin W. I..( 2012;). Characterization of novel canine bocaviruses and their association with respiratory disease. . J Gen Virol 93: 341–346. [CrossRef] [PubMed]
    [Google Scholar]
  41. Kilham L., Margolis G..( 1966;). Spontaneous hepatitis and cerebellar “hypoplasia” in suckling rats due to congenital infections with rat virus. . Am J Pathol 49: 457–475.[PubMed]
    [Google Scholar]
  42. Kilham L., Margolis G..( 1969;). Transplacental infection of rats and hamsters induced by oral and parenteral inoculations of H-l and rat viruses (RV). . Teratology 2: 111–123. [CrossRef] [PubMed]
    [Google Scholar]
  43. Kilham L., Margolis G., Colby E. D..( 1967;). Congenital infections of cats and ferrets by feline panleukopenia virus manifested by cerebellar hypoplasia. . Lab Invest 17: 465–480.[PubMed]
    [Google Scholar]
  44. Kilham L., Margolis G., Colby E. D..( 1971;). Cerebellar ataxia and its congenital transmission in cats by feline panleukopenia virus. . J Am Vet Med Assoc 158: 901–906.
    [Google Scholar]
  45. Koonin E. V., Ilyina T. V..( 1993;). Computer-assisted dissection of rolling circle DNA replication. . Biosystems 30: 241–268. [CrossRef] [PubMed]
    [Google Scholar]
  46. Lau S. K., Woo P. C., Li K. S., Huang Y., Tsoi H. W., Wong B. H., Wong S. S., Leung S. Y., Chan K. H., Yuen K. Y..( 2005;). Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. . Proc Natl Acad Sci U S A 102: 14040–14045. [CrossRef] [PubMed]
    [Google Scholar]
  47. Lau S. K., Woo P. C., Li K. S., Huang Y., Wang M., Lam C. S., Xu H., Guo R., Chan K. H. et al.( 2007a;). Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome. . Virology 367: 428–439. [CrossRef]
    [Google Scholar]
  48. Lau S. K, Yip C. C, Que T. L, Lee R. A, Au-Yeung R. K, Zhou B, So L. Y., Lau Y. L., Chan K. H. et al.( 2007b;). Clinical and molecular epidemiology of human bocavirus in respiratory and fecal samples from children in Hong Kong. . J Infect Dis 196: 986–993.[CrossRef]
    [Google Scholar]
  49. Lau S. K., Woo P. C., Tse H., Fu C. T., Au W. K., Chen X. C., Tsoi H. W., Tsang T. H., Chan J. S. et al.( 2008;). Identification of novel porcine and bovine parvoviruses closely related to human parvovirus 4. . J Gen Virol 89: 1840–1848. [CrossRef] [PubMed]
    [Google Scholar]
  50. Lau S. K., Li K. S., Huang Y., Shek C. T., Tse H., Wang M., Choi G. K., Xu H., Lam C. S. et al.( 2010;). Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. . J Virol 84: 2808–2819. [CrossRef] [PubMed]
    [Google Scholar]
  51. Lau S. K., Woo P. C., Yip C. C., Li K. S., Fu C. T., Huang Y., Chan K. H., Yuen K. Y..( 2011;). Co-existence of multiple strains of two novel porcine bocaviruses in the same pig, a previously undescribed phenomenon in members of the family Parvoviridae, and evidence for inter- and intra-host genetic diversity and recombination. . J Gen Virol 92: 2047–2059. [CrossRef] [PubMed]
    [Google Scholar]
  52. Lau S. K., Woo P. C., Yeung H. C., Teng J. L., Wu Y., Bai R., Fan R. Y., Chan K. H., Yuen K. Y..( 2012;). Identification and characterization of bocaviruses in cats and dogs reveals a novel feline bocavirus and a novel genetic group of canine bocavirus. . J Gen Virol 93: 1573–1582. [CrossRef] [PubMed]
    [Google Scholar]
  53. Lau S. K., Feng Y., Chen H., Luk H. K., Yang W. H., Li K. S., Zhang Y. Z., Huang Y., Song Z. Z. et al.( 2015;). Severe acute respiratory syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination. . J Virol 89: 10532–10547. [CrossRef] [PubMed]
    [Google Scholar]
  54. Lenghaus C., Studdert M. J..( 1980;). Relationships of canine panleucopaenia (enteritis) and myocarditis paroviruses to feline panleucopaenia virus. . Aust Vet J 56: 152–153.[PubMed] [CrossRef]
    [Google Scholar]
  55. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J. H., Wang H., Crameri G., Hu Z. et al.( 2005;). Bats are natural reservoirs of SARS-like coronaviruses. . Science 310: 676–679. [CrossRef] [PubMed]
    [Google Scholar]
  56. Li L., Pesavento P. A., Woods L., Clifford D. L., Luff J., Wang C., Delwart E..( 2011a;). Novel amdovirus in gray foxes. Emerg. . Infect Dis 17: 1876–1878.[CrossRef]
    [Google Scholar]
  57. Li L., Shan T., Wang C., Cote C., Kolman J., Onions D., Gulland F. M., Delwart E..( 2011b;). The fecal viral flora of California sea lions. . J Virol 85: 9909–9917. [CrossRef]
    [Google Scholar]
  58. Li B., Ma J., Xiao S., Fang L., Zeng S., Wen L., Zhang X., Ni Y., Guo R. et al.( 2012;). Complete genome sequence of a novel species of porcine bocavirus, PBoV5. . J Virol 86: 1286–1287. [CrossRef] [PubMed]
    [Google Scholar]
  59. Li L., Cotmore S. F., Tattersall P..( 2013;). Parvoviral left-end hairpin ears are essential during infection for establishing a functional intranuclear transcription template and for efficient progeny genome encapsidation. . J Virol 87: 10501–10514. [CrossRef] [PubMed]
    [Google Scholar]
  60. Lüsebrink J., Schildgen V., Tillmann R. L., Wittleben F., Böhmer A., Müller A., Schildgen O..( 2011;). Detection of head-to-tail DNA sequences of human bocavirus in clinical samples. . PLoS One 6: e19457. [CrossRef] [PubMed]
    [Google Scholar]
  61. McKillen J., McNeilly F., Duffy C., McMenamy M., McNair I., Hjertner B., Millar A., McKay K., Lagan P. et al.( 2011;). Isolation in cell cultures and initial characterisation of two novel bocavirus species from swine in Northern Ireland. . Vet Microbiol 152: 39–45. [CrossRef] [PubMed]
    [Google Scholar]
  62. Mengeling W. L., Cutlip R. C..( 1976;). Reproductive disease experimentally induced by exposing pregnant gilts to porcine parvovirus. . Am J Vet Res 37: 1393–1400.[PubMed]
    [Google Scholar]
  63. Mochizuki M., Hashimoto M., Hajima T., Takiguchi M., Hashimoto A., Une Y., Roerink F., Ohshima T., Parrish C. R., Carmichael L. E..( 2002;). Virologic and serologic identification of minute virus of canines (canine parvovirus type 1) from dogs in Japan. . J Clin Microbiol 40: 3993–3998. [CrossRef] [PubMed]
    [Google Scholar]
  64. Ng T. F., Mesquita J. R., Nascimento M. S., Kondov N. O., Wong W., Reuter G., Knowles N. J., Vega E., Esona M. D. et al.( 2014;). Feline fecal virome reveals novel and prevalent enteric viruses. . Vet Microbiol 171: 102–111. [CrossRef] [PubMed]
    [Google Scholar]
  65. Padgett G. A., Gorham J. R., Henson J. B..( 1967;). Epizootiologic studies of Aleutian disease. I. Transplacental transmission of the virus. . J Infect Dis 117: 35–38. [CrossRef] [PubMed]
    [Google Scholar]
  66. Porter D. D., Larsen A. E., Porter H. G..( 1980;). Aleutian disease of mink. . Adv Immunol 29: 261–286.[PubMed] [CrossRef]
    [Google Scholar]
  67. Pozo F., García-García M. L., Calvo C., Cuesta I., Pérez-Breña P., Casas I..( 2007;). High incidence of human bocavirus infection in children in Spain. . J Clin Virol 40: 224–228. [CrossRef] [PubMed]
    [Google Scholar]
  68. Qiu J., Cheng F., Johnson F. B., Pintel D..( 2007;). The transcription profile of the bocavirus bovine parvovirus is unlike those of previously characterized parvoviruses. . J Virol 81: 12080–12085. [CrossRef] [PubMed]
    [Google Scholar]
  69. Qu X. W., Liu W. P., Qi Z. Y., Duan Z. J., Zheng L. S., Kuang Z. Z., Zhang W. J., Hou Y. D..( 2008;). Phospholipase A2-like activity of human bocavirus VP1 unique region. . Biochem Biophys Res Commun 365: 158–163. [CrossRef] [PubMed]
    [Google Scholar]
  70. Shan T., Lan D., Li L., Wang C., Cui L., Zhang W., Hua X., Zhu C., Zhao W., Delwart E..( 2011a;). Genomic characterization and high prevalence of bocaviruses in swine. . PLoS One 6: e17292. [CrossRef]
    [Google Scholar]
  71. Shan T., Li L., Simmonds P., Wang C., Moeser A., Delwart E..( 2011b;). The fecal virome of pigs on a high-density farm. . J Virol 85: 11697–11708. [CrossRef]
    [Google Scholar]
  72. Sharp C. P., LeBreton M., Kantola K., Nana A., Diffo Jle D., Djoko C. F., Tamoufe U., Kiyang J. A., Babila T. G. et al.( 2010;). Widespread infection with homologues of human parvoviruses B19, PARV4, and human bocavirus of chimpanzees and gorillas in the wild. . J Virol 84: 10289–10296. [CrossRef] [PubMed]
    [Google Scholar]
  73. Shen W., Deng X., Zou W., Cheng F., Engelhardt J. F., Yan Z., Qiu J..( 2015;). Identification and functional analysis of novel nonstructural proteins of human bocavirus 1. . J Virol 89: 10097–10109. [CrossRef] [PubMed]
    [Google Scholar]
  74. Simpson A. A., Chandrasekar V., Hébert B., Sullivan G. M., Rossmann M. G., Parrish C. R..( 2000;). Host range and variability of calcium binding by surface loops in the capsids of canine and feline parvoviruses. . J Mol Biol 300: 597–610. [CrossRef] [PubMed]
    [Google Scholar]
  75. Sloots T. P., McErlean P., Speicher D. J., Arden K. E., Nissen M. D., Mackay I. M..( 2006;). Evidence of human coronavirus HKU1 and human bocavirus in Australian children. . J Clin Virol 35: 99–102. [CrossRef] [PubMed]
    [Google Scholar]
  76. Söderlund-Venermo M., Lahtinen A., Jartti T., Hedman L., Kemppainen K., Lehtinen P., Allander T., Ruuskanen O., Hedman K..( 2009;). Clinical assessment and improved diagnosis of bocavirus-induced wheezing in children, Finland. . Emerg Infect Dis 15: 1423–1430. [CrossRef]
    [Google Scholar]
  77. Solovyev V. V., Shahmuradov I. A., Salamov A. A..( 2010;). Identification of promoter regions and regulatory sites. . Methods Mol Biol 674: 57–83. [CrossRef] [PubMed]
    [Google Scholar]
  78. Spahn G. J., Mohanty S. B., Hetrick F. M..( 1966;). Experimental infection of calves with hemadsorbing enteric (HADEN) virus. . Cornell Vet 56: 377–386.[PubMed]
    [Google Scholar]
  79. Storz J., Bates R. C., Warren G. S., Howard T. H..( 1972;). Distribution of antibodies against bovine parvovirus 1 in cattle and other animal species. . Am J Vet Res 33: 269–272.[PubMed]
    [Google Scholar]
  80. Storz J., Leary J. J., Carlson J. H., Bates R. C..( 1978a;). Parvoviruses associated with diarrhea in calves. . J Am Vet Med Assoc 173: 624–627.
    [Google Scholar]
  81. Storz J., Young S., Carroll E. J., Bates R. C., Bowen R. A., Keney D. A..( 1978b;). Parvovirus infection of the bovine fetus: distribution of infection, antibody response, and age-related susceptibility. . Am J Vet Res 39: 1099–1102.
    [Google Scholar]
  82. Straus S. E., Sebring E. D., Rose J. A..( 1976;). Concatemers of alternating plus and minus strands are intermediates in adenovirus-associated virus DNA synthesis. . Proc Natl Acad Sci U S A 73: 742–746. [CrossRef] [PubMed]
    [Google Scholar]
  83. Suikkanen S., Antila M., Jaatinen A., Vihinen-Ranta M., Vuento M..( 2003;). Release of canine parvovirus from endocytic vesicles. . Virology 316: 267–280. [CrossRef] [PubMed]
    [Google Scholar]
  84. Sukhu L., Fasina O., Burger L., Rai A., Qiu J., Pintel D. J..( 2013;). Characterization of the nonstructural proteins of the bocavirus minute virus of canines. . J Virol 87: 1098–1104. [CrossRef] [PubMed]
    [Google Scholar]
  85. Sun Y., Chen A. Y., Cheng F., Guan W., Johnson F. B., Qiu J..( 2009;). Molecular characterization of infectious clones of the minute virus of canines reveals unique features of bocaviruses. . J Virol 83: 3956–3967. [CrossRef] [PubMed]
    [Google Scholar]
  86. Sun B., Cai Y., Li Y., Li J., Liu K., Li Y., Yang Y..( 2013;). The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in Hela cells. . Virology 440: 75–83. [CrossRef] [PubMed]
    [Google Scholar]
  87. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  88. Tattersall P., Ward D. C..( 1976;). Rolling hairpin model for replication of parvovirus and linear chromosomal DNA. . Nature 263: 106–109. [CrossRef] [PubMed]
    [Google Scholar]
  89. Truyen U..( 1999;). Emergence and recent evolution of canine parvovirus. . Vet Microbiol 69: 47–50. [CrossRef] [PubMed]
    [Google Scholar]
  90. Tse H., Tsoi H. W., Teng J. L., Chen X. C., Liu H., Zhou B., Zheng B. J., Woo P. C., Lau S. K., Yuen K. Y..( 2011;). Discovery and genomic characterization of a novel ovine partetravirus and a new genotype of bovine partetravirus. . PLoS One 6: e25619. [CrossRef] [PubMed]
    [Google Scholar]
  91. Väisänen E., Kuisma I., Phan T. G., Delwart E., Lappalainen M., Tarkka E., Hedman K., Söderlund-Venermo M..( 2014;). Bufavirus in feces of patients with gastroenteritis, Finland. . Emerg Infect Dis 20: 1077–1080. [CrossRef] [PubMed]
    [Google Scholar]
  92. Walker J. E., Saraste M., Runswick M. J., Gay N. J..( 1982;). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. . EMBO J 1: 945–951.[PubMed]
    [Google Scholar]
  93. Wang K., Wang W., Yan H., Ren P., Zhang J., Shen J., Deubel V..( 2010;). Correlation between bocavirus infection and humoral response, and co-infection with other respiratory viruses in children with acute respiratory infection. . J Clin Virol 47: 148–155. [CrossRef] [PubMed]
    [Google Scholar]
  94. Wu Z., Ren X., Yang L., Hu Y., Yang J., He G., Zhang J., Dong J., Sun L. et al.( 2012;). Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces. . J Virol 86: 10999–11012. [CrossRef] [PubMed]
    [Google Scholar]
  95. Yob J. M., Field H., Rashdi A. M., Morrissy C., van der Heide B., Rota P., bin Adzhar A., White J., Daniels P. et al.( 2001;). Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. . Emerg Infect Dis 7: 439–441. [CrossRef]
    [Google Scholar]
  96. Zádori Z., Szelei J., Lacoste M. C., Li Y., Gariépy S., Raymond P., Allaire M., Nabi I. R., Tijssen P..( 2001;). A viral phospholipase A2 is required for parvovirus infectivity. . Dev Cell 1: 291–302. [CrossRef] [PubMed]
    [Google Scholar]
  97. Zeng S., Wang D., Fang L., Ma J., Song T., Zhang R., Chen H., Xiao S..( 2011;). Complete coding sequences and phylogenetic analysis of porcine bocavirus. . J Gen Virol 92: 784–788. [CrossRef] [PubMed]
    [Google Scholar]
  98. Zhai S., Yue C., Wei Z., Long J., Ran D., Lin T., Deng Y., Huang L., Sun L. et al.( 2010;). High prevalence of a novel porcine bocavirus in weanling piglets with respiratory tract symptoms in China. . Arch Virol 155: 1313–1317. [CrossRef] [PubMed]
    [Google Scholar]
  99. Zhao H., Zhao L., Sun Y., Qian Y., Liu L., Jia L., Zhang Y., Dong H..( 2012;). Detection of a bocavirus circular genome in fecal specimens from children with acute diarrhea in Beijing, China. . PLoS One 7: e48980. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000645
Loading
/content/journal/jgv/10.1099/jgv.0.000645
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error