1887

Abstract

Cytomegaloviruses (CMVs) establish persistent, systemic infections and cause disease by maternal–foetal transfer, suggesting that their dissemination is a key target for antiviral intervention. Late clinical presentation has meant that human CMV (HCMV) dissemination is not well understood. Murine CMV (MCMV) provides a tractable model. Whole mouse imaging of virus-expressed luciferase has proved a useful way to track systemic infections. MCMV, in which the abundant lytic gene M78 was luciferase-tagged via a self-cleaving peptide (M78-LUC), allowed serial, unbiased imaging of systemic and peripheral infection without significant virus attenuation. luciferase imaging showed greater sensitivity than plaque assay, and revealed both well-known infection sites (the lungs, lymph nodes, salivary glands, liver, spleen and pancreas) and less explored sites (the bone marrow and upper respiratory tract). We applied luciferase imaging to tracking MCMV lacking M33, a chemokine receptor conserved in HCMV and a proposed anti-viral drug target. M33-deficient M78-LUC colonized normally in peripheral sites and local draining lymph nodes but spread poorly to the salivary gland, suggesting a defect in vascular transport consistent with properties of a chemokine receptor.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000642
2016-12-16
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/12/3379.html?itemId=/content/journal/jgv/10.1099/jgv.0.000642&mimeType=html&fmt=ahah

References

  1. Amsler L., Malouli D., DeFilippis V.. 2013; The inflammasome as a target of modulation by DNA viruses. Future Virol8:357–370 [CrossRef][PubMed]
    [Google Scholar]
  2. Beisser P. S., Vink C., Van Dam J. G., Grauls G., Vanherle S. J., Bruggeman C. A.. 1998; The R33 G protein-coupled receptor gene of rat cytomegalovirus plays an essential role in the pathogenesis of viral infection. J Virol72:2352–2363[PubMed]
    [Google Scholar]
  3. Bennett N. J., May J. S., Stevenson P. G.. 2005; Gamma-herpesvirus latency requires T cell evasion during episome maintenance. PLoS Biol3:e120 [CrossRef][PubMed]
    [Google Scholar]
  4. Bittencourt F. M., Wu S. E., Bridges J. P., Miller W. E.. 2014; The M33 G protein-coupled receptor encoded by murine cytomegalovirus is dispensable for hematogenous dissemination but is required for growth within the salivary gland. J Virol88:11811–11824 [CrossRef][PubMed]
    [Google Scholar]
  5. Burke C. W., Mason J. N., Surman S. L., Jones B. G., Dalloneau E., Hurwitz J. L., Russell C. J.. 2011; Illumination of parainfluenza virus infection and transmission in living animals reveals a tissue-specific dichotomy. PLoS Pathog7:e1002134 [CrossRef][PubMed]
    [Google Scholar]
  6. Cardin R. D., Schaefer G. C., Allen J. R., Davis-Poynter N. J., Farrell H. E.. 2009; The M33 chemokine receptor homolog of murine cytomegalovirus exhibits a differential tissue-specific role during in vivo replication and latency. J Virol83:7590–7601 [CrossRef][PubMed]
    [Google Scholar]
  7. Case R., Sharp E., Benned-Jensen T., Rosenkilde M. M., Davis-Poynter N., Farrell H. E.. 2008; Functional analysis of the murine cytomegalovirus chemokine receptor homologue M33: ablation of constitutive signaling is associated with an attenuated phenotype in vivo. J Virol82:1884–1898 [CrossRef][PubMed]
    [Google Scholar]
  8. Chong K. T., Mims C. A.. 1981; Murine cytomegalovirus particle types in relation to sources of virus and pathogenicity. J Gen Virol57:415–419 [CrossRef][PubMed]
    [Google Scholar]
  9. Coleman S. M., McGregor A.. 2015; A bright future for bioluminescent imaging in viral research. Future Virol10:169–183 [CrossRef][PubMed]
    [Google Scholar]
  10. Cook S. H., Griffin D. E.. 2003; Luciferase imaging of a neurotropic viral infection in intact animals. J Virol77:5333–5338 [CrossRef][PubMed]
    [Google Scholar]
  11. Daley-Bauer L. P., Roback L. J., Wynn G. M., Mocarski E. S.. 2014; Cytomegalovirus hijacks CX3CR1(hi) patrolling monocytes as immune-privileged vehicles for dissemination in mice. Cell Host Microbe15:351–362 [CrossRef][PubMed]
    [Google Scholar]
  12. Davis-Poynter N. J., Lynch D. M., Vally H., Shellam G. R., Rawlinson W. D., Barrell B. G., Farrell H. E.. 1997; Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. J Virol71:1521–1529[PubMed]
    [Google Scholar]
  13. El-Gogo S., Flach B., Staib C., Sutter G., Adler H.. 2008; In vivo attenuation of recombinant murine gammaherpesvirus 68 (MHV-68) is due to the expression and immunogenicity but not to the insertion of foreign sequences. Virology380:322–327 [CrossRef][PubMed]
    [Google Scholar]
  14. Epelman S., Lavine K. J., Randolph G. J.. 2014; Origin and functions of tissue macrophages. Immunity41:21–35 [CrossRef][PubMed]
    [Google Scholar]
  15. Farrell H. E., Abraham A. M., Cardin R. D., Sparre-Ulrich A. H., Rosenkilde M. M., Spiess K., Jensen T. H., Kledal T. N., Davis-Poynter N.. 2011; Partial functional complementation between human and mouse cytomegalovirus chemokine receptor homologues. J Virol85:6091–6095 [CrossRef][PubMed]
    [Google Scholar]
  16. Farrell H. E., Abraham A. M., Cardin R. D., Mølleskov-Jensen A. S., Rosenkilde M. M., Davis-Poynter N.. 2013; Identification of common mechanisms by which human and mouse cytomegalovirus seven-transmembrane receptor homologues contribute to in vivo phenotypes in a mouse model. J Virol87:4112–4117 [CrossRef][PubMed]
    [Google Scholar]
  17. Farrell H. E., Davis-Poynter N., Bruce K., Lawler C., Dolken L., Mach M., Stevenson P. G.. 2015; Lymph node macrophages restrict murine cytomegalovirus dissemination. J Virol89:7147–7158 [CrossRef][PubMed]
    [Google Scholar]
  18. Farrell H. E., Lawler C., Tan C. S., MacDonald K., Bruce K., Mach M., Davis-Poynter N., Stevenson P. G.. 2016; Murine cytomegalovirus exploits olfaction to enter new hosts. MBio7:e00251-16 [CrossRef][PubMed]
    [Google Scholar]
  19. Fenner F.. 1948; The pathogenesis of the acute exanthems. An interpretation based on experimental investigations with mousepox (infectious ectromelia of mice). Lancet2:915–920[PubMed][CrossRef]
    [Google Scholar]
  20. Frederico B., Chao B., May J. S., Belz G. T., Stevenson P. G.. 2014; A murid gamma-herpesviruses exploits normal splenic immune communication routes for systemic spread. Cell Host Microbe15:457–470 [CrossRef][PubMed]
    [Google Scholar]
  21. Heaton N. S., Leyva-Grado V. H., Tan G. S., Eggink D., Hai R., Palese P.. 2013; In vivo bioluminescent imaging of influenza a virus infection and characterization of novel cross-protective monoclonal antibodies. J Virol87:8272–8281 [CrossRef][PubMed]
    [Google Scholar]
  22. Hertel L.. 2014; Human cytomegalovirus tropism for mucosal myeloid dendritic cells. Rev Med Virol24:379–395 [CrossRef][PubMed]
    [Google Scholar]
  23. Jarvis M. A., Nelson J. A.. 2002; Mechanisms of human cytomegalovirus persistence and latency. Front Biosci7:d1575–1582 [CrossRef]
    [Google Scholar]
  24. Krmpotic A., Bubic I., Polic B., Lucin P., Jonjic S.. 2003; Pathogenesis of murine cytomegalovirus infection. Microbes Infect5:1263–1277 [CrossRef][PubMed]
    [Google Scholar]
  25. Luker G. D., Bardill J. P., Prior J. L., Pica C. M., Piwnica-Worms D., Leib D. A.. 2002; Noninvasive bioluminescence imaging of herpes simplex virus type 1 infection and therapy in living mice. J Virol76:12149–12161 [CrossRef][PubMed]
    [Google Scholar]
  26. Luker K. E., Hutchens M., Schultz T., Pekosz A., Luker G. D.. 2005; Bioluminescence imaging of vaccinia virus: effects of interferon on viral replication and spread. Virology341:284–300 [CrossRef][PubMed]
    [Google Scholar]
  27. Milho R., Smith C. M., Marques S., Alenquer M., May J. S., Gillet L., Gaspar M., Efstathiou S., Simas J. P., Stevenson P. G.. 2009; In vivo imaging of murid herpesvirus-4 infection. J Gen Virol90:21–32 [CrossRef][PubMed]
    [Google Scholar]
  28. Misra V., Hudson J. B.. 1980; Minor base sequence differences between the genomes of two strains of murine cytomegalovirus differing in virulence. Arch Virol64:1–8 [CrossRef][PubMed]
    [Google Scholar]
  29. Mocarski E. S., Shenk T., Pass R. F.. 2007; Cytomegaloviruses. In Fields’ Virology pp.2702–2772 Edited by Knipe D. M., Howley P. M.. Philadelphia: Lippincott Williams and Wilkins;
    [Google Scholar]
  30. Noriega V. M., Gardner T. J., Redmann V., Bongers G., Lira S. A., Tortorella D.. 2014; Human cytomegalovirus US28 facilitates cell-to-cell viral dissemination. Viruses6:1202–1218 [CrossRef][PubMed]
    [Google Scholar]
  31. O'Connor C. M., Shenk T.. 2012; Human cytomegalovirus pUL78 G protein-coupled receptor homologue is required for timely cell entry in epithelial cells but not fibroblasts. J Virol86:11425–11433 [CrossRef][PubMed]
    [Google Scholar]
  32. Oliveira S. A., Shenk T. E.. 2001; Murine cytomegalovirus M78 protein, a G protein-coupled receptor homologue, is a constituent of the virion and facilitates accumulation of immediate-early viral mRNA. Proc Natl Acad Sci U S A98:3237–3242 [CrossRef][PubMed]
    [Google Scholar]
  33. Papadimitriou J. M., Shellam G. R., Robertson T. A.. 1984; An ultrastructural investigation of cytomegalovirus replication in murine hepatocytes. J Gen Virol65:1979–1990 [CrossRef][PubMed]
    [Google Scholar]
  34. Poole E., Reeves M., Sinclair J. H.. 2014; The use of primary human cells (fibroblasts, monocytes, and others) to assess human cytomegalovirus function. Methods Mol Biol1119:81–98 [CrossRef][PubMed]
    [Google Scholar]
  35. Raaben M., Prins H. J., Martens A. C., Rottier P. J., De Haan C. A.. 2009; Non-invasive imaging of mouse hepatitis coronavirus infection reveals determinants of viral replication and spread in vivo. Cell Microbiol11:825–841 [CrossRef][PubMed]
    [Google Scholar]
  36. Rawlinson W. D., Farrell H. E., Barrell B. G.. 1996; Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol70:8833–8849[PubMed]
    [Google Scholar]
  37. Scalzo A. A., Corbett A. J., Rawlinson W. D., Scott G. M., Degli-Esposti M. A.. 2007; The interplay between host and viral factors in shaping the outcome of cytomegalovirus infection. Immunol Cell Biol85:46–54 [CrossRef][PubMed]
    [Google Scholar]
  38. Sell S., Dietz M., Schneider A., Holtappels R., Mach M., Winkler T. H.. 2015; Control of murine cytomegalovirus infection by γδ T cells. PLoS Pathog11:e1004481 [CrossRef][PubMed]
    [Google Scholar]
  39. Shellam G. R., Redwood A. J., Smith L. M., Gorman S.. 2007; Murine cytomegalovirus and other herpesviruses. In The Mouse in Biomedical Research, 2nd edn.Vol. II, Diseases pp.1–48 Edited by Fox J. G., Davisson M. T., Quimby F. W., Barthold S. W., Newcomer C. E., Smith A. L.. Amsterdam: Elsevier:[CrossRef]
    [Google Scholar]
  40. Sherrill J. D., Stropes M. P., Schneider O. D., Koch D. E., Bittencourt F. M., Miller J. L., Miller W. E.. 2009; Activation of intracellular signaling pathways by the murine cytomegalovirus G protein-coupled receptor M33 occurs via PLC-{beta}/PKC-dependent and -independent mechanisms. J Virol83:8141–8152 [CrossRef][PubMed]
    [Google Scholar]
  41. Sinzger C., Digel M., Jahn G.. 2008; Cytomegalovirus cell tropism. Curr Top Microbiol Immunol325:63–83[PubMed]
    [Google Scholar]
  42. Smith M. S., Bentz G. L., Alexander J. S., Yurochko A. D.. 2004; Human cytomegalovirus induces monocyte differentiation and migration as a strategy for dissemination and persistence. J Virol78:4444–4453 [CrossRef][PubMed]
    [Google Scholar]
  43. Stevenson E. V., Collins-McMillen D., Kim J. H., Cieply S. J., Bentz G. L., Yurochko A. D.. 2014; HCMV reprogramming of infected monocyte survival and differentiation: a Goldilocks phenomenon. Viruses6:782–807 [CrossRef][PubMed]
    [Google Scholar]
  44. Stoddart C. A., Cardin R. D., Boname J. M., Manning W. C., Abenes G. B., Mocarski E. S.. 1994; Peripheral blood mononuclear phagocytes mediate dissemination of murine cytomegalovirus. J Virol68:6243–6253[PubMed]
    [Google Scholar]
  45. Szymczak A. L., Workman C. J., Wang Y., Vignali K. M., Dilioglou S., Vanin E. F., Vignali D. A.. 2004; Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol22:589–594 [CrossRef][PubMed]
    [Google Scholar]
  46. Tan C. S., Frederico B., Stevenson P. G.. 2014; Herpesvirus delivery to the murine respiratory tract. J Virol Methods206:105–114 [CrossRef][PubMed]
    [Google Scholar]
  47. Waldhoer M., Kledal T. N., Farrell H., Schwartz T. W.. 2002; Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities. J Virol76:8161–8168 [CrossRef][PubMed]
    [Google Scholar]
  48. Wang X., Messerle M., Sapinoro R., Santos K., Hocknell P. K., Jin X., Dewhurst S.. 2003; Murine cytomegalovirus abortively infects human dendritic cells, leading to expression and presentation of virally vectored genes. J Virol77:7182–7392 [CrossRef][PubMed]
    [Google Scholar]
  49. Zhang S., Xiang J., Desmarets L. M. B., Nauwynck H. J.. 2016; Pattern of circulation of MCMV mimicking natural infection upon oronasal inoculation. Virus Res215:114–120 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000642
Loading
/content/journal/jgv/10.1099/jgv.0.000642
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error