1887

Abstract

The ecosystem is continuously exposed to a wide variety of antimicrobials through waste effluents, agricultural run-offs and animal-related and anthropogenic activities, which contribute to the spread of antibiotic resistance genes (ARGs). The contamination of ecosystems with ARGs may create increased opportunities for their transfer to naive microbes and eventually lead to entry into the human food chain. Transduction is a significant mechanism of horizontal gene transfer in natural environments, which has traditionally been underestimated as compared to transformation. We explored the presence of ARGs in environmental bacteriophages in order to recognize their contribution in the spread of ARGs in environmental settings. Bacteriophages were isolated against environmental bacterial isolates, purified and bulk cultured. They were characterized, and detection of ARG and intI genes including bla TEM, bla OXA-2, intI1, intI2, intI3, tetA and tetW was carried out by PCR. This study revealed the presence of various genes [tetA (12.7 %), intI1 (10.9 %), intI2 (10.9 %), intI3 (9.1 %), tetW (9.1 %) and bla OXA-2 (3.6 %)] and bla TEM in a significantly higher proportion (30.9 %). bla SHV, bla OXA-1, tetO, tetB, tetG, tetM and tetS were not detected in any of the phages. Soil phages were the most versatile in terms of ARG carriage. Also, the relative abundance of tetA differed significantly vis-à-vis source. The phages from organized farms showed varied ARGs as compared to the unorganized sector, although bla TEM ARG incidences did not differ significantly. The study reflects on the role of phages in dissemination of ARGs in environmental reservoirs, which may provide an early warning system for future clinically relevant resistance mechanisms.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000639
2016-12-16
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/12/3458.html?itemId=/content/journal/jgv/10.1099/jgv.0.000639&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J..( 1990;). Basic local alignment search tool. . J Mol Biol 215: 403–410. [CrossRef] [PubMed]
    [Google Scholar]
  2. Anand T., Vaid R. K., Bera B. C., Singh J., Barua S., Virmani N., Rajukumar K., Yadav N. K., Nagar D. et al.( 2016;). Isolation of a lytic bacteriophage against virulent Aeromonas hydrophila from an organized equine farm. . J Basic Microbiol 56: 432–437. [CrossRef] [PubMed]
    [Google Scholar]
  3. Arutyunov D., Frost L. S..( 2013;). F conjugation: back to the beginning. . Plasmid 70: 18–32. [CrossRef] [PubMed]
    [Google Scholar]
  4. Balcazar J. L..( 2014;). Bacteriophages as vehicles for antibiotic resistance genes in the environment. . PLoS Pathog 10: e1004219. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bali E. B., Acik L., Sultan N..( 2010;). Phenotypic and molecular characterization of SHV, TEM, and CTX-M extended-spectrum β-lactamase produced by Escherichia coli, Acinetobacter baumannii and Klebsiella isolates in a Turkish hospital. . Afr J Microbiol Res 4: 650–654.
    [Google Scholar]
  6. Balsalobre L. C., Dropa M., de Oliveira D. E., Lincopan N., Mamizuka E. M., Matté G. R., Matté M. H..( 2010;). Presence of bla TEM-116 gene in environmental isolates of Aeromonas hydrophila and Aeromonas jandaei from Brazil. . Braz J Microbiol 41: 718–719. [CrossRef] [PubMed]
    [Google Scholar]
  7. Berglund B., Fick J., Lindgren P. E..( 2015;). Urban wastewater effluent increases antibiotic resistance gene concentrations in a receiving northern European river. . Environ Toxicol Chem 34: 192–196. [CrossRef] [PubMed]
    [Google Scholar]
  8. Boucher Y., Labbate M., Koenig J. E., Stokes H. W..( 2007;). Integrons: mobilizable platforms that promote genetic diversity in bacteria. . Trends Microbiol 15: 301–309. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bush K., Jacoby G. A., Medeiros A. A..( 1995;). A functional classification scheme for beta-lactamases and its correlation with molecular structure. . Antimicrob Agents Chemother 39: 1211–1233. [CrossRef] [PubMed]
    [Google Scholar]
  10. Bush K., Jacoby G. A..( 2010;). Updated functional classification of beta-lactamases. . Antimicrob Agents Chemother 54: 969–976. [CrossRef] [PubMed]
    [Google Scholar]
  11. Calero-Cáceres W., Muniesa M..( 2016;). Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. . Water Res 95: 11–18. [CrossRef] [PubMed]
    [Google Scholar]
  12. Colomer-Lluch M., Imamovic L., Jofre J., Muniesa M..( 2011a;). Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle, pigs, and poultry. . Antimicrob Agents Chemother 55: 4908–4911. [CrossRef]
    [Google Scholar]
  13. Colomer-Lluch M., Jofre J., Muniesa M..( 2011b;). Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. . PLoS One 6: e17549. [CrossRef]
    [Google Scholar]
  14. Colomer-Lluch M., Calero-Cáceres W., Jebri S., Hmaied F., Muniesa M., Jofre J..( 2014a;). Antibiotic resistance genes in bacterial and bacteriophage fractions of Tunisian and Spanish wastewaters as markers to compare the antibiotic resistance patterns in each population. . Environ Int 73: 167–175. [CrossRef]
    [Google Scholar]
  15. Colomer-Lluch M., Jofre J., Muniesa M..( 2014b;). Quinolone resistance genes (qnrA and qnrS) in bacteriophage particles from wastewater samples and the effect of inducing agents on packaged antibiotic resistance genes. . J Antimicrob Chemother 69: 1265–1274. [CrossRef]
    [Google Scholar]
  16. Czekalski N., Sigdel R., Birtel J., Matthews B., Bürgmann H..( 2015;). Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. . Environ Int 81: 45–55. [CrossRef] [PubMed]
    [Google Scholar]
  17. Daghrir R., Drogui P..( 2013;). Tetracycline antibiotics in the environment: a review. . Env Chem Lett 11: 209–227. [CrossRef]
    [Google Scholar]
  18. Dinsdale E. A., Edwards R. A., Hall D., Angly F., Breitbart M., Brulc J. M., Furlan M., Desnues C., Haynes M. et al.( 2008;). Functional metagenomic profiling of nine biomes. . Nature 452: 629–632. [CrossRef]
    [Google Scholar]
  19. Economou V., Gousia P..( 2015;). Agriculture and food animals as a source of antimicrobial-resistant bacteria. . Infect Drug Resist 8: 49–61. [CrossRef] [PubMed]
    [Google Scholar]
  20. Enault F., Briet A., Bouteille L., Roux S., Sullivan M. B., Petit M. A..( 2016;). Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. . ISME J. doi:10.1038/ismej.2016.90. [CrossRef] [PubMed]
    [Google Scholar]
  21. Escudero J. A., Loot C., Nivina A., Mazel D..( 2015;). The integron: adaptation on demand. . Microbiol Spectr 3: MDNA3-0019-2014. [CrossRef] [PubMed]
    [Google Scholar]
  22. Figueroa-Bossi N., Uzzau S., Maloriol D., Bossi L..( 2001;). Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. . Mol Microbiol 39: 260–272. [CrossRef] [PubMed]
    [Google Scholar]
  23. Giowanella M., Bozza A., do Rocio Dalzoto P., Dionísio J. A., Andraus S., Guimarães E. L., Pimentel I. C..( 2015;). Microbiological quality of water from the rivers of Curitiba, Paraná State, Brazil, and the susceptibility to antimicrobial drugs and pathogenicity of Escherichia coli. . Environ Monit Assess 187: 673. [CrossRef] [PubMed]
    [Google Scholar]
  24. Graham D. W., Knapp C. W., Christensen B. T., McCluskey S., Dolfing J..( 2016;). Appearance of β-lactam resistance genes in agricultural soils and clinical isolates over the 20th century. . Sci Rep 6: 21550. [CrossRef] [PubMed]
    [Google Scholar]
  25. Graves A. K., Liwimbi L., Israel D. W., van Heugten E., Robinson B., Cahoon C. W., Lubbers J. F..( 2011;). Distribution of ten antibiotic resistance genes in E. coli isolates from swine manure, lagoon effluent and soil collected from a lagoon waste application field. . Folia Microbiol 56: 131–137. [CrossRef] [PubMed]
    [Google Scholar]
  26. Harford N., Mergeay M..( 1973;). Interspecific transformation of rifampicin resistance in the genus Bacillus. . Mol Gen Genet 120: 151–155. [CrossRef] [PubMed]
    [Google Scholar]
  27. Hodgson D. A..( 2000;). Generalized transduction of serotype 1/2 and serotype 4b strains of Listeria monocytogenes. . Mol Microbiol 35: 312–323. [CrossRef] [PubMed]
    [Google Scholar]
  28. Jechalke S., Broszat M., Lang F., Siebe C., Smalla K., Grohmann E..( 2015;). Effects of 100 years wastewater irrigation on resistance genes, class 1 integrons and IncP-1 plasmids in Mexican soil. . Front Microbiol 6: 163. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kyselková M., Jirout J., Vrchotová N., Schmitt H., Elhottová D..( 2015;). Spread of tetracycline resistance genes at a conventional dairy farm. . Front Microbiol 6: 536. [CrossRef] [PubMed]
    [Google Scholar]
  30. Ladrón N., Fernández M., Agüero J., González Zörn B., Vázquez-Boland J. A., Navas J., Zorn B. G., González B..( 2003;). Rapid identification of Rhodococcus equi by a PCR assay targeting the choE gene. . J Clin Microbiol 41: 3241–3245. [CrossRef] [PubMed]
    [Google Scholar]
  31. Lahlaoui H., Dahmen S., Moussa M. B., Omrane B..( 2011;). First detection of TEM-116 extended-spectrum β-lactamase in a Providencia stuartii isolate from a Tunisian hospital. . Indian J Med Microbiol 29: 258–261. [CrossRef] [PubMed]
    [Google Scholar]
  32. Lindsay J. A., Holden M. T..( 2004;). Staphylococcus aureus: superbug, super genome?. Trends Microbiol 12: 378–385. [CrossRef] [PubMed]
    [Google Scholar]
  33. Livermore D. M..( 1995;). beta-Lactamases in laboratory and clinical resistance. . Clin Microbiol Rev 8: 557–584.[PubMed]
    [Google Scholar]
  34. Marti E., Jofre J., Balcazar J. L..( 2013;). Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant. . PLoS One 8: e78906. [CrossRef]
    [Google Scholar]
  35. Marti E., Variatza E., Balcázar J. L..( 2014;). Bacteriophages as a reservoir of extended-spectrum β-lactamase and fluoroquinolone resistance genes in the environment. . Clin Microbiol Infect 20: O456–O459. [CrossRef] [PubMed]
    [Google Scholar]
  36. Mazaheri N. F. R., Barton M. D., Heuzenroeder M. W..( 2011;). Bacteriophage-mediated transduction of antibiotic resistance in enterococci: transduction in Enterococcus spp. . Lett Appl Microbiol 52: 559–564.[CrossRef]
    [Google Scholar]
  37. Mazel D..( 2004;). Integrons and the origin of antibiotic resistance gene cassettes. . ASM News 70: 520–525.
    [Google Scholar]
  38. Miranda C. D., Tello A., Keen P. L..( 2013;). Mechanisms of antimicrobial resistance in finfish aquaculture environments. . Front Microbiol 4: 233–237. [CrossRef] [PubMed]
    [Google Scholar]
  39. Muniesa M., García A., Miró E., Mirelis B., Prats G., Jofre J., Navarro F..( 2004;). Bacteriophages and diffusion of beta-lactamase genes. . Emerg Infect Dis 10: 1134–1137. [CrossRef] [PubMed]
    [Google Scholar]
  40. Muniesa M., Colomer-Lluch M., Jofre J..( 2013;). Could bacteriophages transfer antibiotic resistance genes from environmental bacteria to human-body associated bacterial populations?. Mob Genet Elements 3: e25847. [CrossRef] [PubMed]
    [Google Scholar]
  41. Murugan K., Prabhakaran P., Al-Sohaibani S., Sekar K..( 2012;). Identification of source of faecal pollution of Tirumanimuttar River, Tamilnadu, India using microbial source tracking. . Environ Monit Assess 184: 6001–6012. [CrossRef] [PubMed]
    [Google Scholar]
  42. Paterson D. L., Hujer K. M., Hujer A. M., Yeiser B., Bonomo M. D., Rice L. B., Bonomo R. A.. International Klebsiella Study Group( 2003;). Extended-spectrum β-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type β-lactamases. . Antimicrob Agents Chemother 47: 3554–3560. [CrossRef] [PubMed]
    [Google Scholar]
  43. Pruden A., Arabi M., Storteboom H. N..( 2012;). Correlation between upstream human activities and riverine antibiotic resistance genes. . Environ Sci Technol 46: 11541–11549. [CrossRef] [PubMed]
    [Google Scholar]
  44. Prudhomme M., Attaiech L., Sanchez G., Martin B., Claverys J. P..( 2006;). Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. . Science 313: 89–92. [CrossRef] [PubMed]
    [Google Scholar]
  45. Roberts M. C..( 2005;). Update on acquired tetracycline resistance genes. . FEMS Microbiol Lett 245: 195–203. [CrossRef] [PubMed]
    [Google Scholar]
  46. Ross J., Topp E..( 2015;). Abundance of antibiotic resistance genes in bacteriophage following soil fertilization with dairy manure or municipal biosolids, and evidence for potential transduction. . Appl Environ Microbiol 81: 7905–7913. [CrossRef] [PubMed]
    [Google Scholar]
  47. Schmieger H., Schicklmaier P..( 1999;). Transduction of multiple drug resistance of Salmonella enterica serovar typhimurium DT104. . FEMS Microbiol Lett 170: 251–256. [CrossRef] [PubMed]
    [Google Scholar]
  48. Schwarz S., Kehrenberg C., Doublet B., Cloeckaert A..( 2004;). Molecular basis of bacterial resistance to chloramphenicol and florfenicol. . FEMS Microbiol Rev 28: 519–542. [CrossRef] [PubMed]
    [Google Scholar]
  49. Smillie C., Garcillán-Barcia M. P., Francia M. V., Rocha E. P., de la Cruz F..( 2010;). Mobility of plasmids. . Microbiol Mol Biol Rev 74: 434–452. [CrossRef] [PubMed]
    [Google Scholar]
  50. Sparling P. F..( 1966;). Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. . J Bacteriol 92: 1364–1371.[PubMed]
    [Google Scholar]
  51. Speer B. S., Shoemaker N. B., Salyers A. A..( 1992;). Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. . Clin Microbiol Rev 5: 387–399. [CrossRef]
    [Google Scholar]
  52. Su H. C., Ying G. G., Tao R., Zhang R. Q., Fogarty L. R., Kolpin D. W..( 2011;). Occurrence of antibiotic resistance and characterization of resistance genes and integrons in Enterobacteriaceae isolated from integrated fish farms in South China. . J Environ Monit 13: 3229–3236. [CrossRef] [PubMed]
    [Google Scholar]
  53. Subirats J., Sànchez-Melsió A., Borrego C. M., Balcázar J. L., Simonet P..( 2016;). Metagenomic analysis reveals that bacteriophages are reservoirs of antibiotic resistance genes. . Int J Antimicrob Agents 48: 163–167. [CrossRef] [PubMed]
    [Google Scholar]
  54. Vignoli R., Varela G., Mota M. I., Cordeiro N. F., Power P., Ingold E., Gadea P., Sirok A., Schelotto F. et al.( 2005;). Enteropathogenic Escherichia coli strains carrying genes encoding the PER-2 and TEM-116 extended-spectrum β-lactamases isolated from children with diarrhea in Uruguay. . J Clin Microbiol 43: 2940–2943. [CrossRef] [PubMed]
    [Google Scholar]
  55. Walsh T. R., Toleman M. A., Jones R. N..( 2007;). Comment on: occurrence, prevalence and genetic environment of CTX-M β-lactamases in Enterobacteriaceae from Indian hospitals. . J Antimicrob Chemother 60: 187–188.[CrossRef]
    [Google Scholar]
  56. Xu J., Xu Y., Wang H., Guo C., Qiu H., He Y., Zhang Y., Li X., Meng W..( 2015;). Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. . Chemosphere 119: 1379–1385. [CrossRef] [PubMed]
    [Google Scholar]
  57. Yin Q., Yue D., Peng Y., Liu Y., Xiao L..( 2013;). Occurrence and distribution of antibiotic-resistant bacteria and transfer of resistance genes in Lake Taihu. . Microbes Environ 28: 479–486. [CrossRef] [PubMed]
    [Google Scholar]
  58. Zechner E. L., Lang S., Schildbach J. F..( 2012;). Assembly and mechanisms of bacterial type IV secretion machines. . Philos Trans R Soc Lond B Biol Sci 367: 1073–1087. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000639
Loading
/content/journal/jgv/10.1099/jgv.0.000639
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error