1887

Abstract

The prognosis of dengue remains a challenge in the early, objective triage of patients with dengue fever of differing severity. Circulating immuno-modulating proteins have brought new possibilities as prognostic markers of severe dengue (SD). This systematic review is devoted to understanding the potential utility of blood-based cytokines and chemokines as prognostication markers of SD based on the current literature. PubMed and Embase were searched. Of 794 candidate articles, 685 abstracts were screened against our exclusion/inclusion criteria and 25 (3.6 %) studies met the quality assessments. A total of 18 studies were retrospective observational and 2 were prospective cohort studies. Elevated IL-10, up to day 7 of fever onset, stood out as a candidate prognostic marker for SD using the 1997 and 2009 World Health Organization (WHO) case definitions. IFNγ was another potential prognostic marker of SD (1997 WHO case definition), but its levels varied between studies. Significant heterogeneity in methodologies and patient cohorts prevent ready application of IL-10 and IFNγ as prognostic markers to other dengue populations. Our results suggest that the current non-randomized studies are delivering inconsistent messages and higher-quality studies, with consistent methodologies and validation in independent patient cohorts, are needed to delineate confounding variables. Major gaps identified were full accounting and transparency of sampling days, dengue virus type, infection status and age group.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000637
2016-12-16
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/12/3103.html?itemId=/content/journal/jgv/10.1099/jgv.0.000637&mimeType=html&fmt=ahah

References

  1. Adikari T. N., Gomes L., Wickramasinghe N., Salimi M., Wijesiriwardana N., Kamaladasa A., Shyamali N. L., Ogg G. S., Malavige G. N..( 2016;). Dengue NS1 antigen contributes to disease severity by inducing interleukin (IL)-10 by monocytes. . Clin Exp Immunol184:90–100. [CrossRef][PubMed]
    [Google Scholar]
  2. Arias J., Valero N., Mosquera J., Montiel M., Reyes E., Larreal Y., Alvarez-Mon M..( 2014;). Increased expression of cytokines, soluble cytokine receptors, soluble apoptosis ligand and apoptosis in dengue. . Virology452–453:42–51. [CrossRef][PubMed]
    [Google Scholar]
  3. Bhatt S., Gething P. W., Brady O. J., Messina J. P., Farlow A. W., Moyes C. L., Drake J. M., Brownstein J. S., Hoen A. G. et al.( 2013;). The global distribution and burden of dengue. . Nature496:504–507. [CrossRef][PubMed]
    [Google Scholar]
  4. Boonnak K., Slike B. M., Burgess T. H., Mason R. M., Wu S. J., Sun P., Porter K., Rudiman I. F., Yuwono D. et al.( 2008;). Role of dendritic cells in antibody-dependent enhancement of dengue virus infection. . J Virol82:3939–3951. [CrossRef][PubMed]
    [Google Scholar]
  5. Bozza F. A., Cruz O. G., Zagne S. M., Azeredo E. L., Nogueira R. M., Assis E. F., Bozza P. T., Kubelka C. F..( 2008;). Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity. . BMC Infect Dis8:86. [CrossRef][PubMed]
    [Google Scholar]
  6. Brasier A. R., Ju H., Garcia J., Spratt H. M., Victor S. S., Forshey B. M., Halsey E. S., Comach G., Sierra G. et al.( 2012;). A three-component biomarker panel for prediction of dengue hemorrhagic fever. . Am J Trop Med Hyg86:341–348. [CrossRef][PubMed]
    [Google Scholar]
  7. Butthep P., Chunhakan S., Yoksan S., Tangnararatchakit K., Chuansumrit A..( 2012;). Alteration of cytokines and chemokines during febrile episodes associated with endothelial cell damage and plasma leakage in dengue hemorrhagic fever. . Pediatr Infect Dis J31:e232e238. [CrossRef][PubMed]
    [Google Scholar]
  8. Capeding M. R., Tran N. H., Hadinegoro S. R. S., Ismail H. I. H. M., Chotpitayasunondh T., Chua M. N., Luong C. Q., Rusmil K., Wirawan D. N. et al.( 2014;). Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. . Lancet384:1358–1365. [CrossRef][PubMed]
    [Google Scholar]
  9. Cardier J. E., Rivas B., Romano E., Rothman A. L., Perez-Perez C., Ochoa M., Caceres A. M., Cardier M., Guevara N., Giovannetti R..( 2006;). Evidence of vascular damage in dengue disease: demonstration of high levels of soluble cell adhesion molecules and circulating endothelial cells. . Endothelium13:335–340. [CrossRef][PubMed]
    [Google Scholar]
  10. Chareonsirisuthigul T., Kalayanarooj S., Ubol S..( 2007;). Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells. . J Gen Virol88:365–375. [CrossRef][PubMed]
    [Google Scholar]
  11. Chaturvedi U. C., Agarwal R., Elbishbishi E. A., Mustafa A. S..( 2000;). Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis. . FEMS Immunol Med Microbiol28:183–188. [CrossRef][PubMed]
    [Google Scholar]
  12. Chen R. F., Liu J. W., Yeh W. T., Wang L., Chang J. C., Yu H. R., Cheng J. T., Yang K. D..( 2005;). Altered T helper 1 reaction but not increase of virus load in patients with dengue hemorrhagic fever. . FEMS Immunol Med Microbiol44:43–50. [CrossRef][PubMed]
    [Google Scholar]
  13. Chen L. C., Lei H. Y., Liu C. C., Shiesh S. C., Chen S. H., Liu H. S., Lin Y. S., Wang S. T., Shyu H. W., Yeh T. M..( 2006;). Correlation of serum levels of macrophage migration inhibitory factor with disease severity and clinical outcome in dengue patients. . Am J Trop Med Hyg74:142–147.[PubMed]
    [Google Scholar]
  14. Chen H. C., Hofman F. M., Kung J. T., Lin Y. D., Wu-Hsieh B. A..( 2007;). Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. . J Virol81:5518–5526. [CrossRef][PubMed]
    [Google Scholar]
  15. Chen J., Ng M. M., Chu J. J..( 2015;). Activation of TLR2 and TLR6 by dengue NS1 protein and its implications in the immunopathogenesis of dengue virus infection. . PLoS Pathog11:e1005053. [CrossRef][PubMed]
    [Google Scholar]
  16. Cheng S. B., Sharma S..( 2015;). Interleukin-10: a pleiotropic regulator in pregnancy. . Am J Reprod Immunol73:487–500. [CrossRef][PubMed]
    [Google Scholar]
  17. Clark I. A..( 2007;). The advent of the cytokine storm. . Immunol Cell Biol85:271–273. [CrossRef][PubMed]
    [Google Scholar]
  18. Clyde K., Kyle J. L., Harris E..( 2006;). Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. . J Virol80:11418–11431. [CrossRef][PubMed]
    [Google Scholar]
  19. Cochrane Group( 2012;). Cochrane Handbook for Systematic Reviews of Interventions , version 5. 1. 0. London:: Cochrane Group;.
    [Google Scholar]
  20. Costa V. V., Fagundes C. T., Valadão D. F., Cisalpino D., Dias A. C., Silveira K. D., Kangussu L. M., Ávila T. V., Bonfim M. R. et al.( 2012;). A model of DENV-3 infection that recapitulates severe disease and highlights the importance of IFN-γ in host resistance to infection. . PLoS Negl Trop Dis6:e1663. [CrossRef][PubMed]
    [Google Scholar]
  21. Cui L., Lee Y. H., Kumar Y., Xu F., Lu K., Ooi E. E., Tannenbaum S. R., Ong C. N..( 2013;). Serum metabolome and lipidome changes in adult patients with primary dengue infection. . PLoS Negl Trop Dis7:e2373. [CrossRef][PubMed]
    [Google Scholar]
  22. Cui L., Lee Y. H., Thein T. L., Fang J., Pang J., Ooi E. E., Leo Y. S., Ong C. N., Tannenbaum S. R..( 2016;). Serum metabolomics reveals serotonin as a predictor of severe dengue in the early phase of dengue fever. . PLoS Negl Trop Dis10:e0004607. [CrossRef][PubMed]
    [Google Scholar]
  23. D'Andrea A., Aste-Amezaga M., Valiante N. M., Ma X., Kubin M., Trinchieri G..( 1993;). Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. . J Exp Med178:1041–1048. [CrossRef][PubMed]
    [Google Scholar]
  24. De La Cruz Hernández S., Puerta-Guardo H., Flores-Aguilar H., González-Mateos S., López-Martinez I., Ortiz-Navarrete V., Ludert J. E., Del Angel R. M..( 2014;). A strong interferon response correlates with a milder dengue clinical condition. . J Clin Virol60:196–199. [CrossRef][PubMed]
    [Google Scholar]
  25. De-Oliveira-Pinto L. M., Marinho C. F., Povoa T. F., de Azeredo E. L., de Souza L. A., Barbosa L. D., Motta-Castro A. R., Alves A. M., Ávila C. A. et al.( 2012;). Regulation of inflammatory chemokine receptors on blood T cells associated to the circulating versus liver chemokines in dengue fever. . PLoS One7:e38527. [CrossRef][PubMed]
    [Google Scholar]
  26. Del Moral-Hernández O., Martínez-Hernández N. E., Mosso-Pani M. A., Hernández-Sotelo D., Illades-Aguiar B., Flores-Alfaro E., Antonio-Vejar V., Leyva-Vázquez M. A..( 2014;). Association DENV1 and DENV2 infection with high serum levels of soluble thrombomodulin and VEGF in patients with dengue fever and dengue hemorrhagic fever. . Int J Clin Exp Med7:370–378.[PubMed]
    [Google Scholar]
  27. Duyen H. T., Ngoc T. V., Ha D. T., Hang V. T., Kieu N. T., Young P. R., Farrar J. J., Simmons C. P., Wolbers M., Wills B. A..( 2011;). Kinetics of plasma viremia and soluble nonstructural protein 1 concentrations in dengue: differential effects according to serotype and immune status. . J Infect Dis203:1292–1300. [CrossRef][PubMed]
    [Google Scholar]
  28. Endy T. P., Nisalak A., Chunsuttitwat S., Vaughn D. W., Green S., Ennis F. A., Rothman A. L., Libraty D. H..( 2004;). Relationship of preexisting dengue virus (DV) neutralizing antibody levels to viremia and severity of disease in a prospective cohort study of DV infection in Thailand. . J Infect Dis189:990–1000. [CrossRef][PubMed]
    [Google Scholar]
  29. Fink J., Gu F., Vasudevan S. G..( 2006;). Role of T cells, cytokines and antibody in dengue fever and dengue haemorrhagic fever. . Rev Med Virol16:263–275. [CrossRef][PubMed]
    [Google Scholar]
  30. Furuta T., Murao L. A., Lan N. T., Huy N. T., Huong V. T., Thuy T. T., Tham V. D., Nga C. T., Ha T. T. et al.( 2012;). Association of mast cell-derived VEGF and proteases in Dengue shock syndrome. . PLoS Negl Trop Dis6:e1505. [CrossRef][PubMed]
    [Google Scholar]
  31. Green S., Vaughn D. W., Kalayanarooj S., Nimmannitya S., Suntayakorn S., Nisalak A., Lew R., Innis B. L., Kurane I. et al.( 1999a;). Early immune activation in acute dengue illness is related to development of plasma leakage and disease severity. . J Infect Dis179:755–762. [CrossRef][PubMed]
    [Google Scholar]
  32. Green S., Vaughn D. W., Kalayanarooj S., Nimmannitya S., Suntayakorn S., Nisalak A., Rothman A. L., Ennis F. A..( 1999b;). Elevated plasma interleukin-10 levels in acute dengue correlate with disease severity. . J Med Virol59:329–334. [CrossRef][PubMed]
    [Google Scholar]
  33. Green S., Rothman A..( 2006;). Immunopathological mechanisms in dengue and dengue hemorrhagic fever. . Curr Opin Infect Dis19:429–436. [CrossRef][PubMed]
    [Google Scholar]
  34. Guerrero C. D., Arrieta A. F., Ramirez N. D., Rodríguez L. S., Vega R., Bosch I., Rodríguez J. A., Narváez C. F., Salgado D. M..( 2013;). High plasma levels of soluble ST2 but not its ligand IL-33 is associated with severe forms of pediatric dengue. . Cytokine61:766–771. [CrossRef][PubMed]
    [Google Scholar]
  35. Guyatt G. H., Oxman A. D., Vist G. E., Kunz R., Falck-Ytter Y., Alonso-Coello P., Schünemann H. J..GRADE Working Group( 2008;). GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. . BMJ336:924–926. [CrossRef][PubMed]
    [Google Scholar]
  36. Halstead S. B., O'Rourke E. J..( 1977;). Antibody-enhanced dengue virus infection in primate leukocytes. . Nature265:739–741. [CrossRef][PubMed]
    [Google Scholar]
  37. Halstead S. B., Mahalingam S., Marovich M. A., Ubol S., Mosser D. M..( 2010;). Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. . Lancet Infect Dis10:712–722. [CrossRef][PubMed]
    [Google Scholar]
  38. Hammond S. N., Balmaseda A., Pérez L., Tellez Y., Saborío S., Mercado J. C., Videa E., Rodriguez Y., Pérez M. A. et al.( 2005;). Differences in dengue severity in infants, children, and adults in a 3-year hospital-based study in Nicaragua. . Am J Trop Med Hyg73:1063–1070.[PubMed]
    [Google Scholar]
  39. Hayes D. F., Trock B., Harris A. L..( 1998;). Assessing the clinical impact of prognostic factors: when is ‘statistically significant’ clinically useful?. Breast Cancer Res Treat52:305–319. [CrossRef][PubMed]
    [Google Scholar]
  40. Horras C. J., Lamb C. L., Mitchell K. A..( 2011;). Regulation of hepatocyte fate by interferon-γ. . Cytokine Growth Factor Rev22:35–43. [CrossRef][PubMed]
    [Google Scholar]
  41. Houghton-Triviño N., Salgado D. M., Rodríguez J. A., Bosch I., Castellanos J. E..( 2010;). Levels of soluble ST2 in serum associated with severity of dengue due to tumour necrosis factor alpha stimulation. . J Gen Virol91:697–706. [CrossRef][PubMed]
    [Google Scholar]
  42. Kalayanarooj S., Vaughn D. W., Nimmannitya S., Green S., Suntayakorn S., Kunentrasai N., Viramitrachai W., Ratanachu-eke S., Kiatpolpoj S. et al.( 1997;). Early clinical and laboratory indicators of acute dengue illness. . J Infect Dis176:313–321. [CrossRef][PubMed]
    [Google Scholar]
  43. Koraka P., Lim Y. P., Shin M. D., Setiati T. E., Mairuhu A. T., van Gorp E. C., Soemantri A., Osterhaus A. D., Martina B. E..( 2010;). Plasma levels of inter-alpha inhibitor proteins in children with acute dengue virus infection. . PLoS One5:e9967. [CrossRef][PubMed]
    [Google Scholar]
  44. Kumar Y., Liang C., Bo Z., Rajapakse J. C., Ooi E. E., Tannenbaum S. R..( 2012;). Serum proteome and cytokine analysis in a longitudinal cohort of adults with primary dengue infection reveals predictive markers of DHF. . PLoS Negl Trop Dis6:e1887. [CrossRef]
    [Google Scholar]
  45. Kurane I., Innis B. L., Nimmannitya S., Nisalak A., Meager A., Janus J., Ennis F. A..( 1991;). Activation of T lymphocytes in dengue virus infections. High levels of soluble interleukin 2 receptor, soluble CD4, soluble CD8, interleukin 2, and interferon-gamma in sera of children with dengue. . J Clin Invest88:1473–1480. [CrossRef][PubMed]
    [Google Scholar]
  46. Kurane I., Innis B. L., Nimmannitya S., Nisalak A., Meager A., Ennis F. A..( 1993;). High levels of interferon alpha in the sera of children with dengue virus infection. . Am J Trop Med Hyg48:222–229.[PubMed]
    [Google Scholar]
  47. Kyle J. L., Harris E..( 2008;). Global spread and persistence of dengue. . Annu Rev Microbiol62:71–92. [CrossRef][PubMed]
    [Google Scholar]
  48. Laur F., Murgue B., Deparis X., Roche C., Cassar O., Chungue E..( 1998;). Plasma levels of tumour necrosis factor alpha and transforming growth factor beta-1 in children with dengue 2 virus infection in French Polynesia. . Trans R Soc Trop Med Hyg92:654–656. [CrossRef][PubMed]
    [Google Scholar]
  49. Lee L. K., Earnest A., Carrasco L. R., Thein T. L., Gan V. C., Lee V. J., Lye D. C., Leo Y. S..( 2013;). Safety and cost savings of reducing adult dengue hospitalization in a tertiary care hospital in Singapore. . Trans R Soc Trop Med Hyg107:37–42. [CrossRef][PubMed]
    [Google Scholar]
  50. Lee Y. H., Ooi E. E..( 2013;). Molecular biomarkers at the interface of basic and clinical dengue research. . Annals Acad Med42,:608–610.
    [Google Scholar]
  51. Leo Y. S., Gan V. C., Ng E. L., Hao Y., Ng L. C., Pok K. Y., Dimatatac F., Go C. J., Lye D. C..( 2013;). Utility of warning signs in guiding admission and predicting severe disease in adult dengue. . BMC Infect Dis13:498. [CrossRef][PubMed]
    [Google Scholar]
  52. Levy A., Valero N., Espina L. M., Añez G., Arias J., Mosquera J..( 2010;). Increment of interleukin 6, tumour necrosis factor alpha, nitric oxide, C-reactive protein and apoptosis in dengue. . Trans R Soc Trop Med Hyg104:16–23. [CrossRef][PubMed]
    [Google Scholar]
  53. Libraty D. H., Endy T. P., Houng H. S., Green S., Kalayanarooj S., Suntayakorn S., Chansiriwongs W., Vaughn D. W., Nisalak A. et al.( 2002a;). Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. . J Infect Dis185:1213–1221. [CrossRef][PubMed]
    [Google Scholar]
  54. Libraty D. H., Young P. R., Pickering D., Endy T. P., Kalayanarooj S., Green S., Vaughn D. W., Nisalak A., Ennis F. A., Rothman A. L..( 2002b;). High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. . J Infect Dis186:1165–1168. [CrossRef][PubMed]
    [Google Scholar]
  55. Libraty D. H., Acosta L. P., Tallo V., Segubre-Mercado E., Bautista A., Potts J. A., Jarman R. G., Yoon I. K., Gibbons R. V. et al.( 2009;). A prospective nested case-control study of dengue in infants: rethinking and refining the antibody-dependent enhancement dengue hemorrhagic fever model. . PLoS Med6:e1000171. [CrossRef][PubMed]
    [Google Scholar]
  56. Malavige G. N., Gomes L., Alles L., Chang T., Salimi M., Fernando S., Nanayakkara K. D., Jayaratne S., Ogg G. S..( 2013a;). Serum IL-10 as a marker of severe dengue infection. . BMC Infect Dis13:341. [CrossRef][PubMed]
    [Google Scholar]
  57. Malavige G. N., Jeewandara C., Alles K. M. L., Salimi M., Gomes L., Kamaladasa A., Jayaratne S. D., Ogg G. S..( 2013b;). Suppression of virus specific immune responses by IL-10 in acute dengue infection. . PLoS Negl Trop Dis7:e2409. [CrossRef]
    [Google Scholar]
  58. McShane L. M., Altman D. G., Sauerbrei W., Taube S. E., Gion M., Clark G. M..Statistics Subcommittee of the NCI-EORTC Working Group on Cancer Diagnostics( 2005;). REporting recommendations for tumor MARKer prognostic studies (REMARK). . Nat Clin Pract Oncol2:416–422. [CrossRef][PubMed]
    [Google Scholar]
  59. Modhiran N., Watterson D., Muller D. A., Panetta A. K., Sester D. P., Liu L., Hume D. A., Stacey K. J., Young P. R..( 2015;). Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. . Sci Transl Med7:304ra142. [CrossRef][PubMed]
    [Google Scholar]
  60. Moher D., Liberati A., Tetzlaff J., Altman D. G..PRISMA Group( 2009;). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. . PLoS Med6:e1000097. [CrossRef][PubMed]
    [Google Scholar]
  61. Mongkolsapaya J., Dejnirattisai W., Xu X. N., Vasanawathana S., Tangthawornchaikul N., Chairunsri A., Sawasdivorn S., Duangchinda T., Dong T. et al.( 2003;). Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. . Nat Med9:921–927. [CrossRef][PubMed]
    [Google Scholar]
  62. Murphy B. R., Whitehead S. S..( 2011;). Immune response to dengue virus and prospects for a vaccine. . Annu Rev Immunol29:587–619. [CrossRef][PubMed]
    [Google Scholar]
  63. Narvaez F., Gutierrez G., Pérez M. A., Elizondo D., Nuñez A., Balmaseda A., Harris E..( 2011;). Evaluation of the traditional and revised WHO classifications of dengue disease severity. . PLoS Negl Trop Dis5:e1397. [CrossRef][PubMed]
    [Google Scholar]
  64. Nguyen T. H., Lei H. Y., Nguyen T. L., Lin Y. S., Huang K. J., Le B. L., Lin C. F., Yeh T. M., Do Q. H. et al.( 2004;). Dengue hemorrhagic fever in infants: a study of clinical and cytokine profiles. . J Infect Dis189:221–232. [CrossRef][PubMed]
    [Google Scholar]
  65. O'Garra A., Vieira P..( 2007;). T(H)1 cells control themselves by producing interleukin-10. . Nat Rev Immunol7:425–428. [CrossRef][PubMed]
    [Google Scholar]
  66. OhAinle M., Balmaseda A., Macalalad A. R., Tellez Y., Zody M. C., Saborío S., Nuñez A., Lennon N. J., Birren B. W. et al.( 2011;). Dynamics of dengue disease severity determined by the interplay between viral genetics and serotype-specific immunity. . Sci Transl Med3:114ra128. [CrossRef][PubMed]
    [Google Scholar]
  67. Pal T., Dutta S. K., Mandal S., Saha B., Tripathi A..( 2014;). Differential clinical symptoms among acute phase Indian patients revealed significant association with dengue viral load and serum IFN-gamma level. . J Clin Virol61:365–370. [CrossRef][PubMed]
    [Google Scholar]
  68. Potts J. A., Rothman A. L..( 2008;). Clinical and laboratory features that distinguish dengue from other febrile illnesses in endemic populations. . Trop Med Int Health13:1328–1340. [CrossRef][PubMed]
    [Google Scholar]
  69. Pérez A. B., García G., Sierra B., Alvarez M., Vázquez S., Cabrera M., Rodríguez R., Rosario D., Martínez E. et al.( 2004;). IL-10 levels in dengue patients: some findings from the exceptional epidemiological conditions in Cuba. . J Med Virol73:230–234. [CrossRef][PubMed]
    [Google Scholar]
  70. Rathakrishnan A., Wang S. M., Hu Y., Khan A. M., Ponnampalavanar S., Lum L. C., Manikam R., Sekaran S. D..( 2012;). Cytokine expression profile of dengue patients at different phases of illness. . PLoS One7:e52215. [CrossRef][PubMed]
    [Google Scholar]
  71. Shresta S., Kyle J. L., Snider H. M., Basavapatna M., Beatty P. R., Harris E..( 2004;). Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. . J Virol78:2701–2710. [CrossRef][PubMed]
    [Google Scholar]
  72. Soundravally R., Hoti S. L., Patil S. A., Cleetus C. C., Zachariah B., Kadhiravan T., Narayanan P., Kumar B. A..( 2014;). Association between proinflammatory cytokines and lipid peroxidation in patients with severe dengue disease around defervescence. . Int J Infect Dis18:68–72. [CrossRef][PubMed]
    [Google Scholar]
  73. Srikiatkhachorn A., Green S..( 2010;). Markers of dengue disease severity. . Curr Top Microbiol Immunol338:67–82. [CrossRef][PubMed]
    [Google Scholar]
  74. St John A. L., Rathore A. P., Raghavan B., Ng M. L., Abraham S. N..( 2013;). Contributions of mast cells and vasoactive products, leukotrienes and chymase, to dengue virus-induced vascular leakage. . Elife2:e00481. [CrossRef][PubMed]
    [Google Scholar]
  75. Suharti C., van Gorp E. C., Dolmans W. M., Setiati T. E., Hack C. E., Djokomoeljanto R., van der Meer J. W..( 2003;). Cytokine patterns during dengue shock syndrome. . Eur Cytokine Netw14:172–177.[PubMed]
    [Google Scholar]
  76. Suhrbier A., La Linn M..( 2003;). Suppression of antiviral responses by antibody-dependent enhancement of macrophage infection. . Trends Immunol24:165–168. [CrossRef][PubMed]
    [Google Scholar]
  77. Thein T. L., Gan V. C., Lye D. C., Yung C. F., Leo Y. S..( 2013;). Utilities and limitations of the World Health Organization 2009 warning signs for adult dengue severity. . PLoS Negl Trop Dis7:e2023. [CrossRef][PubMed]
    [Google Scholar]
  78. Tricou V., Minh N. N., Farrar J., Tran H. T., Simmons C. P..( 2011;). Kinetics of viremia and NS1 antigenemia are shaped by immune status and virus serotype in adults with dengue. . PLoS Negl Trop Dis5:e1309. [CrossRef][PubMed]
    [Google Scholar]
  79. Tsai C.-Y., Lee I.-K., Lee C.-H., Yang K. D., Liu J.-W..( 2013a;). Comparisons of dengue illness classified based on the 1997 and 2009 World Health Organization dengue classification schemes. . J Microbiol Immunol Infect46:271–281. [CrossRef]
    [Google Scholar]
  80. Tsai T. T., Chuang Y. J., Lin Y. S., Wan S. W., Chen C. L., Lin C. F..( 2013b;). An emerging role for the anti-inflammatory cytokine interleukin-10 in dengue virus infection. . J Biomed Sci20:40. [CrossRef][PubMed]
    [Google Scholar]
  81. Ubol S., Phuklia W., Kalayanarooj S., Modhiran N..( 2010;). Mechanisms of immune evasion induced by a complex of dengue virus and preexisting enhancing antibodies. . J Infect Dis201:923–935. [CrossRef][PubMed]
    [Google Scholar]
  82. van de Weg C. A., Pannuti C. S., van den Ham H. J., de Araújo E. S., Boas L. S., Felix A. C., Carvalho K. I., Levi J. E., Romano C. M. et al.( 2014;). Serum angiopoietin-2 and soluble VEGF receptor 2 are surrogate markers for plasma leakage in patients with acute dengue virus infection. . J Clin Virol60:328–335. [CrossRef][PubMed]
    [Google Scholar]
  83. Vaughn D. W., Green S., Kalayanarooj S., Innis B. L., Nimmannitya S., Suntayakorn S., Endy T. P., Raengsakulrach B., Rothman A. L. et al.( 2000;). Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. . J Infect Dis181:2–9. [CrossRef][PubMed]
    [Google Scholar]
  84. Wang L., Chen R. F., Liu J. W., Yu H. R., Kuo H. C., Yang K. D..( 2007;). Implications of dynamic changes among tumor necrosis factor-α (TNF-α), membrane TNF receptor, and soluble TNF receptor levels in regard to the severity of dengue infection. . Am J Trop Med Hyg77:297–302.[PubMed]
    [Google Scholar]
  85. WHO( 1986;). Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control, , 1st edn.. Geneva:: World Health Organization;.
    [Google Scholar]
  86. WHO( 1997;). Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control, , 2nd edn.. Geneva:: World Health Organisation;.
    [Google Scholar]
  87. WHO( 2009;). Dengue: Guidelines for Diagnosis, Treatment Prevention and Control. Geneva:: World Health Organization;.
    [Google Scholar]
  88. Wells G., Shea B., O’Connell D., Peterson J., Welch V., Losos M., Tugwell P..( 2013;). The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. . Ottawa, ON:: Ottawa Hospital Research Institute;. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
  89. Wilder-Smith A., Massad E..( 2016;). Age specific differences in efficacy and safety for the CYD-tetravalent dengue vaccine. . Expert Rev Vaccines15:437–441. [CrossRef][PubMed]
    [Google Scholar]
  90. Yacoub S., Wills B..( 2014;). Predicting outcome from dengue. . BMC Med12:147. [CrossRef][PubMed]
    [Google Scholar]
  91. Zapata J. C., Cox D., Salvato M. S..( 2014;). The role of platelets in the pathogenesis of viral hemorrhagic fevers. . PLoS Negl Trop Dis8:e2858. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000637
Loading
/content/journal/jgv/10.1099/jgv.0.000637
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error