1887

Abstract

The mAb E60 has the potential to be a desirable therapeutic molecule since it efficiently neutralizes all four serotypes of dengue virus (DENV). However, mammalian-cell-produced E60 exhibits antibody-dependent enhancement of infection (ADE) activity, rendering it inefficacious in vivo, and treated animals more susceptible to developing more severe diseases during secondary infection. In this study, we evaluated a plant-based expression system for the production of therapeutically suitable E60. The mAb was transiently expressed in Nicotiana benthamianaWT and a ∆XFT line, a glycosylation mutant lacking plant-specific N-glycan residues. The mAb was efficiently expressed and assembled in leaves and exhibited highly homogenous N-glycosylation profiles, i.e. GnGnXF3 or GnGn structures, depending on the expression host. Both E60 glycovariants demonstrated equivalent antigen-binding specificity and in vitro neutralization potency against DENV serotypes 2 and 4 compared with their mammalian-cell-produced counterpart. By contrast, plant-produced E60 exhibited reduced ADE activity in Fc gamma receptor expressing human cells. Our results suggest the ability of plant-produced antibodies to minimize ADE, which may lead to the development of safe and highly efficacious antibody-based therapeutics against DENV and other ADE-prone viral diseases. Our study provides so far unknown insight into the relationship between mAb N-glycosylation and ADE, which contributes to our understanding of how sugar moieties of antibodies modulate Fc-mediated functions and viral pathogenesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000635
2016-12-16
2019-08-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/12/3280.html?itemId=/content/journal/jgv/10.1099/jgv.0.000635&mimeType=html&fmt=ahah

References

  1. Arntzen C..( 2015;). Plant-made pharmaceuticals: from ‘Edible Vaccines' to Ebola therapeutics. . Plant Biotechnol J 13: 1013–1016. [CrossRef] [PubMed]
    [Google Scholar]
  2. Balsitis S. J., Williams K. L., Lachica R., Flores D., Kyle J. L., Mehlhop E., Johnson S., Diamond M. S., Beatty P. R., Harris E..( 2010;). Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. . PLoS Pathog 6: e1000790. [CrossRef] [PubMed]
    [Google Scholar]
  3. Beltramello M., Williams K. L., Simmons C. P., Macagno A., Simonelli L., Quyen N. T., Sukupolvi-Petty S., Navarro-Sanchez E., Young P. R. et al.( 2010;). The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. . Cell Host Microbe 8: 271–283. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bendandi M., Marillonnet S., Kandzia R., Thieme F., Nickstadt A., Herz S., Fröde R., Inogés S., Lòpez-Dìaz de Cerio A. et al.( 2010;). Rapid, high-yield production in plants of individualized idiotype vaccines for non-Hodgkin's lymphoma. . Ann Oncol 21: 2420–2427. [CrossRef] [PubMed]
    [Google Scholar]
  5. Boonnak K., Dambach K. M., Donofrio G. C., Tassaneetrithep B., Marovich M. A..( 2011;). Cell type specificity and host genetic polymorphisms influence antibody-dependent enhancement of dengue virus infection. . J Virol 85: 1671–1683. [CrossRef] [PubMed]
    [Google Scholar]
  6. Boonnak K., Slike B. M., Donofrio G. C., Marovich M. A..( 2013;). Human FcγRII cytoplasmic domains differentially influence antibody-mediated dengue virus infection. . J Immunol 190: 5659–5665. [CrossRef] [PubMed]
    [Google Scholar]
  7. Brown M. G., King C. A., Sherren C., Marshall J. S., Anderson R..( 2006;). A dominant role for FcgammaRII in antibody-enhanced dengue virus infection of human mast cells and associated CCL5 release. . J Leukoc Biol 80: 1242–1250. [CrossRef] [PubMed]
    [Google Scholar]
  8. Burke D. S., Monath T. P..( 2001;). Flaviviruses. . In Fields Virology, , 4th edn., pp. 1043–1125. Edited by Knipe D. M., Howley P. M.. Philadelphia:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  9. Chan K. R., Zhang S. L., Tan H. C., Chan Y. K., Chow A., Lim A. P., Vasudevan S. G., Hanson B. J., Ooi E. E..( 2011;). Ligation of Fc gamma receptor IIB inhibits antibody-dependent enhancement of dengue virus infection. . Proc Natl Acad Sci U S A 108: 12479–12484. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chawla T., Chan K. R., Zhang S. L., Tan H. C., Lim A. P., Hanson B. J., Ooi E. E..( 2013;). Dengue virus neutralization in cells expressing Fc gamma receptors. . PLoS One 8: e65231. [CrossRef] [PubMed]
    [Google Scholar]
  11. Check Hayden E. E., Reardon S..( 2014;). Should experimental drugs be used in the Ebola outbreak?. Nature http://dx.doi.org/10.1038/nature.2014.15698.
    [Google Scholar]
  12. Chen Q..( 2011;). Expression and manufacture of pharmaceutical proteins in genetically engineered horticultural plants. . In Transgenic Horticultural Crops: Challenges and Opportunities – Essays by Experts, pp. 83–124. Edited by Mou B., Scorza R.. Boca Raton:: Taylor & Francis;.[CrossRef]
    [Google Scholar]
  13. Chen Q..( 2016;). Glycoengineering of plants yields glycoproteins with polysialylation and other defined N-glycoforms. . Proc Natl Acad Sci U S A 113: 9404–9406. [CrossRef]
    [Google Scholar]
  14. Chen Q., Davis K. R..( 2016;). The potential of plants as a system for the development and production of human biologics. . F1000Res 5: 912–920. [CrossRef]
    [Google Scholar]
  15. Chen Q., Lai H..( 2014a;). Gene delivery into plant cells for recombinant protein production. . Biomed Res Int 2015: 1–10. [CrossRef]
    [Google Scholar]
  16. Chen Q., Lai H..( 2014b;). Plant-derived monoclonal antibodies as human biologics for infectious disease and cancer. . In Plant-Derived Pharmaceuticals: Principles and Applications for Developing Countries, pp. 42–75. Edited by Hefferon K. L.. Croydon, UK:: CABI;.
    [Google Scholar]
  17. Chen Q., Lai H..( 2015;). The growing potential of plant-made monoclonal antibodies. . Drug Target Review 2: 41–44.
    [Google Scholar]
  18. Chen Q., He J., Phoolcharoen W., Mason H. S..( 2011;). Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. . Hum Vaccin 7: 331–338. [CrossRef] [PubMed]
    [Google Scholar]
  19. Chen Q., Lai H., Hurtado J., Stahnke J., Leuzinger K., Dent M..( 2013;). Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. . Adv Tech Biol Med 1: 103–112. [CrossRef] [PubMed]
    [Google Scholar]
  20. Chung K. M., Thompson B. S., Fremont D. H., Diamond M. S..( 2007;). Antibody recognition of cell surface-associated NS1 triggers Fc-gamma receptor-mediated phagocytosis and clearance of West Nile Virus-infected cells. . J Virol 81: 9551–9555. [CrossRef] [PubMed]
    [Google Scholar]
  21. de Alwis R., Beltramello M., Messer W. B., Sukupolvi-Petty S., Wahala W. M., Kraus A., Olivarez N. P., Pham Q., Brien J. D. et al.( 2011;). In-depth analysis of the antibody response of individuals exposed to primary dengue virus infection. . PLoS Negl Trop Dis 5: e1188. [CrossRef] [PubMed]
    [Google Scholar]
  22. de Alwis R., Smith S. A., Olivarez N. P., Messer W. B., Huynh J. P., Wahala W. M. P. B., White L. J., Diamond M. S., Baric R. S. et al.( 2012;). Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. . Proc Natl Acad Sci U S A 109: 7439–7444. [CrossRef]
    [Google Scholar]
  23. De Muynck B., Navarre C., Boutry M..( 2010;). Production of antibodies in plants: status after twenty years. . Plant Biotechnol J 8: 529–563. [CrossRef] [PubMed]
    [Google Scholar]
  24. Dejnirattisai W., Wongwiwat W., Supasa S., Zhang X., Dai X., Rouvinski A., Rouvinsky A., Jumnainsong A., Edwards C. et al.( 2015;). A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. . Nat Immunol 16: 170–177. [CrossRef] [PubMed]
    [Google Scholar]
  25. Dejnirattisai W., Supasa P., Wongwiwat W., Rouvinski A., Barba-Spaeth G., Duangchinda T., Sakuntabhai A., Cao-Lormeau V. M., Malasit P. et al.( 2016;). Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. . Nat Immunol 17: 1102–1108. [CrossRef] [PubMed]
    [Google Scholar]
  26. Deng Y. Q., Dai J. X., Ji G. H., Jiang T., Wang H. J., Yang H. O., Tan W. L., Liu R., Yu M. et al.( 2011;). A broadly flavivirus cross-neutralizing monoclonal antibody that recognizes a novel epitope within the fusion loop of E protein. . PLoS One 6: e16059. [CrossRef] [PubMed]
    [Google Scholar]
  27. García G., Arango M., Pérez A. B., Fonte L., Sierra B., Rodríguez-Roche R., Aguirre E., Fiterre I., Guzmán M. G..( 2006;). Antibodies from patients with dengue viral infection mediate cellular cytotoxicity. . J Clin Virol 37: 53–57. [CrossRef] [PubMed]
    [Google Scholar]
  28. Giritch A., Marillonnet S., Engler C., van Eldik G., Botterman J., Klimyuk V., Gleba Y..( 2006;). Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. . Proc Natl Acad Sci U S A 103: 14701–14706. [CrossRef] [PubMed]
    [Google Scholar]
  29. Halstead S. B..( 2007;). Dengue. . Lancet 370: 1644–1652.[CrossRef]
    [Google Scholar]
  30. Halstead S. B., Mahalingam S., Marovich M. A., Ubol S., Mosser D. M..( 2010;). Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. . Lancet Infect Dis 10: 712–722. [CrossRef] [PubMed]
    [Google Scholar]
  31. He J., Lai H., Brock C., Chen Q..( 2012;). A novel system for rapid and cost-effective production of detection and diagnostic reagents of West Nile virus in plants. . J Biomed Biotechnol 2012: 1–10. [CrossRef]
    [Google Scholar]
  32. He J., Lai H., Engle M., Gorlatov S., Gruber C., Steinkellner H., Diamond M. S., Chen Q..( 2014;). Generation and analysis of novel plant-derived antibody-based therapeutic molecules against West Nile virus. . PLoS One 9: e93541. [CrossRef] [PubMed]
    [Google Scholar]
  33. Houde D., Peng Y., Berkowitz S. A., Engen J. R..( 2010;). Post-translational modifications differentially affect IgG1 conformation and receptor binding. . Mol Cell Proteomics 9: 1716–1728. [CrossRef] [PubMed]
    [Google Scholar]
  34. Huang Z., Phoolcharoen W., Lai H., Piensook K., Cardineau G., Zeitlin L., Whaley K. J., Arntzen C. J., Mason H. S., Chen Q..( 2010;). High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system. . Biotechnol Bioeng 106: 9–17. [CrossRef] [PubMed]
    [Google Scholar]
  35. Huang X., Yue Y., Li D., Zhao Y., Qiu L., Chen J., Pan Y., Xi J., Wang X. et al.( 2016;). Antibody-dependent enhancement of dengue virus infection inhibits RLR-mediated Type-I IFN-independent signalling through upregulation of cellular autophagy. . Sci Rep 6: 22303. [CrossRef] [PubMed]
    [Google Scholar]
  36. Huisman W., Martina B. E., Rimmelzwaan G. F., Gruters R. A., Osterhaus A. D..( 2009;). Vaccine-induced enhancement of viral infections. . Vaccine 27: 505–512. [CrossRef] [PubMed]
    [Google Scholar]
  37. Jefferis R..( 2005;). Glycosylation of recombinant antibody therapeutics. . Biotechnol Prog 21: 11–16. [CrossRef] [PubMed]
    [Google Scholar]
  38. Kaneko Y., Nimmerjahn F., Ravetch J..( 2006;). Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. . Science 313: 670–673. [CrossRef] [PubMed]
    [Google Scholar]
  39. Kayser V., Chennamsetty N., Voynov V., Forrer K., Helk B., Trout B. L..( 2011;). Glycosylation influences on the aggregation propensity of therapeutic monoclonal antibodies. . Biotechnol J 6: 38–44. [CrossRef]
    [Google Scholar]
  40. Kuhn R. J., Zhang W., Rossmann M. G., Pletnev S. V., Corver J., Lenches E., Jones C. T., Mukhopadhyay S., Chipman P. R. et al.( 2002;). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. . Cell 108: 717–725.[PubMed] [CrossRef]
    [Google Scholar]
  41. Kyle J. L., Harris E..( 2008;). Global spread and persistence of dengue. . Annu Rev Microbiol 62: 71–92. [CrossRef] [PubMed]
    [Google Scholar]
  42. Lai H., Chen Q..( 2012;). Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current Good Manufacture Practice regulations. . Plant Cell Rep 31: 573–584. [CrossRef] [PubMed]
    [Google Scholar]
  43. Lai H., Engle M., Fuchs A., Keller T., Johnson S., Gorlatov S., Diamond M. S., Chen Q..( 2010;). Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice. . Proc Natl Acad Sci U S A 107: 2419–2424. [CrossRef] [PubMed]
    [Google Scholar]
  44. Lai H., He J., Engle M., Diamond M. S., Chen Q..( 2012;). Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. . Plant Biotechnol J 10: 95–104. [CrossRef] [PubMed]
    [Google Scholar]
  45. Lai H., He J., Hurtado J., Stahnke J., Fuchs A., Mehlhop E., Gorlatov S., Loos A., Diamond M. S., Chen Q..( 2014;). Structural and functional characterization of an anti-West Nile virus monoclonal antibody and its single-chain variant produced in glycoengineered plants. . Plant Biotechnol J 12: 1098–1107. [CrossRef] [PubMed]
    [Google Scholar]
  46. Laoprasopwattana K., Libraty D. H., Endy T. P., Nisalak A., Chunsuttiwat S., Ennis F. A., Rothman A. L., Green S..( 2007;). Antibody-dependent cellular cytotoxicity mediated by plasma obtained before secondary dengue virus infections: potential involvement in early control of viral replication. . J Infect Dis 195: 1108–1116. [CrossRef] [PubMed]
    [Google Scholar]
  47. Leuzinger K., Dent M., Hurtado J., Stahnke J., Lai H., Zhou X., Chen Q..( 2013;). Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. . J Vis Exp 77: e50521.
    [Google Scholar]
  48. Loos A., Steinkellner H..( 2012;). IgG-Fc glycoengineering in non-mammalian expression hosts. . Arch Biochem Biophys 526: 167–173. [CrossRef] [PubMed]
    [Google Scholar]
  49. Loos A., Steinkellner H..( 2014;). Plant glyco-biotechnology on the way to synthetic biology. . Front Plant Sci 5: 523. [CrossRef]
    [Google Scholar]
  50. Loos A., Gruber C., Altmann F., Mehofer U., Hensel F., Grandits M., Oostenbrink C., Stadlmayr G., Furtmüller P. G., Steinkellner H..( 2014;). Expression and glycoengineering of functionally active heteromultimeric IgM in plants. . Proc Natl Acad Sci U S A 111: 6263–6268. [CrossRef] [PubMed]
    [Google Scholar]
  51. Mehlhop E., Ansarah-Sobrinho C., Johnson S., Engle M., Fremont D. H., Pierson T. C., Diamond M. S..( 2007;). Complement protein C1q inhibits antibody-dependent enhancement of flavivirus infection in an IgG subclass-specific manner. . Cell Host Microbe 2: 417–426. [CrossRef] [PubMed]
    [Google Scholar]
  52. Mehlhop E., Nelson S., Jost C. A., Gorlatov S., Johnson S., Fremont D. H., Diamond M. S., Pierson T. C..( 2009;). Complement protein C1q reduces the stoichiometric threshold for antibody-mediated neutralization of West Nile virus. . Cell Host Microbe 6: 381–391. [CrossRef] [PubMed]
    [Google Scholar]
  53. Mohamad Zamberi Z., Zakaria Z., Abdul Aziz A. T., Heng B. S., Zaid M., Chong C. L., Noor F. M., Abu Bakar S., Boon Peng H..( 2015;). The high-affinity human IgG receptor Fc gamma receptor I (FcγRI) is not associated with vascular leakage of dengue. . J Negat Results Biomed 14: 1. [CrossRef] [PubMed]
    [Google Scholar]
  54. Morens D. M..( 1994;). Antibody-dependent enhancement of infection and the pathogenesis of viral disease. . Clin Infect Dis 19: 500–512. [CrossRef] [PubMed]
    [Google Scholar]
  55. Mukhopadhyay S., Kuhn R. J., Rossmann M. G..( 2005;). A structural perspective of the flavivirus life cycle. . Nat Rev Microbiol 3: 13–22. [CrossRef] [PubMed]
    [Google Scholar]
  56. Murphy B. R., Whitehead S. S..( 2011;). Immune response to dengue virus and prospects for a vaccine. . Annu Rev Immunol 29: 587–619. [CrossRef] [PubMed]
    [Google Scholar]
  57. Murray N. E., Quam M. B., Wilder-Smith A..( 2013;). Epidemiology of dengue: past, present and future prospects. . Clin Epidemiol 5: 299–309. [CrossRef] [PubMed]
    [Google Scholar]
  58. Olinger G. G., Pettitt J., Kim D., Working C., Bohorov O., Bratcher B., Hiatt E., Hume S. D., Johnson A. K. et al.( 2012;). Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. . Proc Natl Acad Sci U S A 109: 18030–18035. [CrossRef] [PubMed]
    [Google Scholar]
  59. Oliphant T., Engle M., Nybakken G. E., Doane C., Johnson S., Huang L., Gorlatov S., Mehlhop E., Marri A. et al.( 2005;). Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. . Nat Med 11: 522–530. [CrossRef] [PubMed]
    [Google Scholar]
  60. Oliphant T., Nybakken G. E., Engle M., Xu Q., Nelson C. A., Sukupolvi-Petty S., Marri A., Lachmi B. E., Olshevsky U. et al.( 2006;). Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein. . J Virol 80: 12149–12159. [CrossRef] [PubMed]
    [Google Scholar]
  61. Pang T..( 2016;). SAGE committee advice on dengue vaccine. . Lancet Infect Dis 16: 880–882. [CrossRef] [PubMed]
    [Google Scholar]
  62. Paul A. M., Shi Y., Acharya D., Douglas J. R., Cooley A., Anderson J. F., Huang F., Bai F..( 2014;). Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vitro. . J Gen Virol 95: 1712–1722. [CrossRef] [PubMed]
    [Google Scholar]
  63. Pierson T. C., Xu Q., Nelson S., Oliphant T., Nybakken G. E., Fremont D. H., Diamond M. S..( 2007;). The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. . Cell Host Microbe 1: 135–145. [CrossRef] [PubMed]
    [Google Scholar]
  64. Rico-Hesse R., Harrison L. M., Salas R. A., Tovar D., Nisalak A., Ramos C., Boshell J., de Mesa M. T., Nogueira R. M., da Rosa A. T..( 1997;). Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. . Virology 230: 244–251. [CrossRef] [PubMed]
    [Google Scholar]
  65. Rodrigo W. W., Jin X., Blackley S. D., Rose R. C., Schlesinger J. J..( 2006;). Differential enhancement of dengue virus immune complex infectivity mediated by signaling-competent and signaling-incompetent human Fcgamma RIA (CD64) or FcgammaRIIA (CD32). . J Virol 80: 10128–10138. [CrossRef] [PubMed]
    [Google Scholar]
  66. Rodrigo W. W., Block O. K., Lane C., Sukupolvi-Petty S., Goncalvez A. P., Johnson S., Diamond M. S., Lai C. J., Rose R. C. et al.( 2009;). Dengue virus neutralization is modulated by IgG antibody subclass and Fcgamma receptor subtype. . Virology 394: 175–182. [CrossRef] [PubMed]
    [Google Scholar]
  67. Rothman A. L..( 2004;). Dengue: defining protective versus pathologic immunity. . J Clin Invest 113: 946–951. [CrossRef] [PubMed]
    [Google Scholar]
  68. Schlesinger J. J., Brandriss M. W., Walsh E. E..( 1987;). Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. . J Gen Virol 68: 853–857. [CrossRef] [PubMed]
    [Google Scholar]
  69. Shaaltiel Y., Tekoah Y..( 2016;). Plant specific N-glycans do not have proven adverse effects in humans. . Nat Biotechnol 34: 706–708. [CrossRef] [PubMed]
    [Google Scholar]
  70. Shevitz J., Bonham-Carter J., Lim J., Sinclair A..( 2011;). An economic comparison of three cell culture techniques. . BioPharm Int 24: 54–60.
    [Google Scholar]
  71. Stadlmann J., Pabst M., Kolarich D., Kunert R., Altmann F..( 2008;). Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. . Proteomics 8: 2858–2871. [CrossRef] [PubMed]
    [Google Scholar]
  72. Strasser R., Stadlmann J., Schähs M., Stiegler G., Quendler H., Mach L., Glössl J., Weterings K., Pabst M., Steinkellner H..( 2008;). Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. . Plant Biotechnol J 6: 392–402. [CrossRef] [PubMed]
    [Google Scholar]
  73. Strasser R., Altmann F., Steinkellner H..( 2014;). Controlled glycosylation of plant-produced recombinant proteins. . Curr Opin Biotechnol 30: 95–100. [CrossRef] [PubMed]
    [Google Scholar]
  74. Taylor A., Foo S. S., Bruzzone R., Dinh L. V., King N. J., Mahalingam S., Vu Dinh L..( 2015;). Fc receptors in antibody-dependent enhancement of viral infections. . Immunol Rev 268: 340–364. [CrossRef] [PubMed]
    [Google Scholar]
  75. Tirado S. M., Yoon K. J..( 2003;). Antibody-dependent enhancement of virus infection and disease. . Viral Immunol 16: 69–86. [CrossRef] [PubMed]
    [Google Scholar]
  76. Tusé D., Tu T., McDonald K. A..( 2014;). Manufacturing economics of plant-made biologics: case studies in therapeutic and industrial enzymes. . Biomed Res Int 2014: 1–16. [CrossRef]
    [Google Scholar]
  77. Wilder-Smith A., Gubler D. J..( 2008;). Geographic expansion of dengue: the impact of international travel. . Med Clin North Am 92: 1377–1390. [CrossRef] [PubMed]
    [Google Scholar]
  78. Williams K. L., Sukupolvi-Petty S., Beltramello M., Johnson S., Sallusto F., Lanzavecchia A., Diamond M. S., Harris E..( 2013;). Therapeutic efficacy of antibodies lacking Fcγ receptor binding against lethal dengue virus infection is due to neutralizing potency and blocking of enhancing antibodies [corrected]. . PLoS Pathog 9: e1003157. [CrossRef] [PubMed]
    [Google Scholar]
  79. Zeitlin L., Pettitt J., Scully C., Bohorova N., Kim D., Pauly M., Hiatt A., Ngo L., Steinkellner H. et al.( 2011;). Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. . Proc Natl Acad Sci U S A 108: 20690–20694. [CrossRef] [PubMed]
    [Google Scholar]
  80. Zheng K., Bantog C., Bayer R..( 2011;). The impact of glycosylation on monoclonal antibody conformation and stability. . MAbs 3: 568–576. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000635
Loading
/content/journal/jgv/10.1099/jgv.0.000635
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error