Pathogenesis of Senecavirus A infection in finishing pigs Free

Abstract

Senecavirus A (SVA) is an emerging picornavirus that has been associated with vesicular disease and neonatal mortality in swine. Many aspects of SVA infection biology and pathogenesis, however, remain unknown. Here the pathogenesis of SVA was investigated in finishing pigs. Animals were inoculated via the oronasal route with SVA strain SD15-26 and monitored for clinical signs and lesions associated with SVA infection. Viraemia was assessed in serum and virus shedding monitored in oral and nasal secretions and faeces by real-time reverse transcriptase quantitative PCR (RT-qPCR) and/or virus isolation. Additionally, viral load and tissue distribution were assessed during acute infection and following convalescence from disease. Clinical signs characterized by lethargy and lameness were first observed on day 4 post-inoculation (pi) and persisted for approximately 2–10 days. Vesicular lesions were first observed on day 4 pi on the snout and/or feet, affecting the coronary bands, dewclaws, interdigital space and heel/sole of SVA-infected animals. A short-term viraemia was observed between days 3 and 10 pi, whereas virus shedding was detected between days 1 and 28 pi in oral and nasal secretions and faeces. Notably, RT-qPCR and hybridization (ISH) performed on tissues collected on day 38 pi revealed the presence of SVA RNA in the tonsils of all SVA-infected animals. Serological responses to SVA were characterized by early neutralizing antibody responses (day 5 pi), which coincided with decreased levels of viraemia, virus shedding and viral load in tissues. This study provides significant insights into the pathogenesis and infectious dynamics of SVA in swine.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000631
2016-12-16
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/12/3267.html?itemId=/content/journal/jgv/10.1099/jgv.0.000631&mimeType=html&fmt=ahah

References

  1. Alexandersen S., Zhang Z., Donaldson A. 2002; Aspects of the persistence of foot-and-mouth disease virus in animals-the carrier problem. Microbes Infect 4:1099–1110 [View Article][PubMed]
    [Google Scholar]
  2. Billinis C., Paschaleri-Papadopoulou E., Psychas V., Vlemmas J., Leontides S., Koumbati M., Kyriakis S. C., Papadopoulos O. 1999; Persistence of encephalomyocarditis virus (EMCV) infection in piglets. Vet Microbiol 70:171–177 [View Article][PubMed]
    [Google Scholar]
  3. Boisvert S., Raymond F., Godzaridis E., Laviolette F., Corbeil J. 2012; Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol 13:R122 [View Article][PubMed]
    [Google Scholar]
  4. Bracht A. J., O'Hearn E. S., Fabian A. W., Barrette R. W., Sayed A. 2016; Real-time reverse transcription PCR assay for detection of Senecavirus a in swine vesicular diagnostic specimens. PLoS One 11:e0146211 [View Article][PubMed]
    [Google Scholar]
  5. Canning P., Canon A., Bates J. L., Gerardy K., Linhares D. C. L., Piñeyro P. E., Schwartz K. J., Yoon K. J., Rademacher C. J. et al. 2016; Neonatal mortality, vesicular lesions and lameness associated with Senecavirus A in a U.S. Sow farm. Transbound Emerg Dis 63:373–378 [View Article][PubMed]
    [Google Scholar]
  6. Carocci M., Bakkali-Kassimi L. 2012; The encephalomyocarditis virus. Virulence 3:351–367 [View Article][PubMed]
    [Google Scholar]
  7. Chen Z., Yuan F., Li Y., Shang P., Schroeder R., Lechtenberg K., Henningson J., Hause B., Bai J. et al. 2016; Construction and characterization of a full-length cDNA infectious clone of emerging porcine Senecavirus A. Virology 497:111–124 [View Article][PubMed]
    [Google Scholar]
  8. Dotzauer A., Kraemer L. 2012; Innate and adaptive immune responses against picornaviruses and their counteractions: an overview. World J Virol 1:91–107 [View Article][PubMed]
    [Google Scholar]
  9. Gelmetti D., Meroni A., Brocchi E., Koenen F., Cammarata G. 2006; Pathogenesis of encephalomyocarditis experimental infection in young piglets: a potential animal model to study viral myocarditis. Vet Res 37:15–23 [View Article][PubMed]
    [Google Scholar]
  10. Gordon D., Green P. 2013; Consed: a graphical editor for next-generation sequencing. Bioinformatics 29:2936–2937 [View Article][PubMed]
    [Google Scholar]
  11. Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., Adiconis X., Fan L., Raychowdhury R. et al. 2011; Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652 [View Article][PubMed]
    [Google Scholar]
  12. Guo B., Piñeyro P. E., Rademacher C. J., Zheng Y., Li G., Yuan J., Hoang H., Gauger P. C., Madson D. M. et al. 2016; Novel Senecavirus A in Swine with vesicular disease, United States, July 2015. Emerg Infect Dis 22:1325–1327 [View Article][PubMed]
    [Google Scholar]
  13. Hales L. M., Knowles N. J., Reddy P. S., Xu L., Hay C., Hallenbeck P. L. 2008; Complete genome sequence analysis of Seneca Valley virus-001, a novel oncolytic picornavirus. J Gen Virol 89:1265–1275 [View Article][PubMed]
    [Google Scholar]
  14. He Y., Ong K. C., Gao Z., Zhao X., Anderson V. M., McNutt M. A., Wong K. T., Lu M. 2014; Tonsillar crypt epithelium is an important extra-central nervous system site for viral replication in EV71 encephalomyelitis. Am J Pathol 184:714–720 [View Article][PubMed]
    [Google Scholar]
  15. Hierholzer J. C., Killington R. A. 1996; Virus isolation and quantitation. In Virology Methods Manual pp. 25–46 Edited by Many B. W. J., Kangro H. O. Amsterdam: Elsevier; [CrossRef]
    [Google Scholar]
  16. ICTV 2015 Virus Taxonomy: 2015 Release London:
    [Google Scholar]
  17. Joshi L. R., Mohr K. A., Clement T., Hain K. S., Myers B., Yaros J., Nelson E. A., Christopher-Hennings J., Gava D. et al. 2016; Detection of the emerging Picornavirus Senecavirus A in pigs, mice, and houseflies. J Clin Microbiol 54:1536–1545 [View Article][PubMed]
    [Google Scholar]
  18. Knowles N. J., Hales B. H., Jones J. G., Landgraf J. A., House K. L., Skele K. D., Burroughs K. D., Hallenbeck P. L. 2006; Epidemiology of Seneca Valley virus: identification and characterization of isolates from pigs in the United States. In Eur 2006 XVIth Meet Eur Study Gr Mol Biol Picornaviruses p. G2 Saariselka:
    [Google Scholar]
  19. Koboldt D. C., Zhang Q., Larson D. E., Shen D., McLellan M. D., Lin L., Miller C. A., Mardis E. R., Ding L., Wilson R. K. 2012; VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22:568–576 [View Article][PubMed]
    [Google Scholar]
  20. Leme R. A., Zotti E., Alcântara B. K., Oliveira M., Freitas L. A., Alfieri A. F., Alfieri A. A. 2015; Senecavirus A: an emerging vesicular infection in Brazilian pig herds. Transbound Emerg Dis 62:603–611 [View Article][PubMed]
    [Google Scholar]
  21. Li H. 2011; A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993 [View Article][PubMed]
    [Google Scholar]
  22. Montiel N., Buckley A., Guo B., Kulshreshtha V., VanGeelen A., Hoang H., Rademacher C., Yoon K. J., Lager K. 2016; Vesicular disease in 9-week-old pigs experimentally infected with senecavirus A. Emerg Infect Dis 22:1246–1248 [View Article][PubMed]
    [Google Scholar]
  23. Murphy C., Bashiruddin J. B., Quan M., Zhang Z., Alexandersen S. 2010; Foot-and-mouth disease viral loads in pigs in the early, acute stage of disease. Vet Rec 166:10–14 [View Article][PubMed]
    [Google Scholar]
  24. Papaioannou N., Billinis C., Psychas V., Papadopoulos O., Vlemmas I. 2003; Pathogenesis of encephalomyocarditis virus (EMCV) infection in piglets during the viraemia phase: a histopathological, immunohistochemical and virological study. J Comp Pathol 129:161–168 [View Article][PubMed]
    [Google Scholar]
  25. Pasma T., Davidson S., Shaw S. L. 2008; Idiopathic vesicular disease in swine in Manitoba. Can Vet J 49:84–85[PubMed]
    [Google Scholar]
  26. Poirier J. T., Dobromilskaya I., Moriarty W. F., Peacock C. D., Hann C. L., Rudin C. M. 2013; Selective tropism of Seneca Valley virus for variant subtype small cell lung cancer. J Natl Cancer Inst 105:1059–1065 [View Article][PubMed]
    [Google Scholar]
  27. Racaniello V. R. 2013; Picornaviridae: the viruses and their replication. In Fields Virol, 6th edn. pp. 453–489 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  28. Singh K., Corner S., Clark S. G., Sherba G., Fredrickson R. 2012; Seneca Valley virus and vesicular lesions in a pig with idiopathic vesicular disease. J Vet Sci Technol 3:1-3
    [Google Scholar]
  29. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  30. Vannucci F. A., Linhares D. C., Barcellos D. E., Lam H. C., Collins J., Marthaler D. 2015; Identification and complete genome of Seneca Valley virus in vesicular fluid and sera of pigs affected with idiopathic vesicular disease, Brazil. Transbound Emerg Dis 62:589–593 [View Article][PubMed]
    [Google Scholar]
  31. Venkataraman S., Reddy S. P., Loo J., Idamakanti N., Hallenbeck P. L., Reddy V. S. 2008; Structure of Seneca Valley virus-001: an oncolytic picornavirus representing a new genus. Structure 16:1555–1561 [View Article][PubMed]
    [Google Scholar]
  32. Wu Q., Zhao X., Bai Y., Sun B., Xie Q., Ma J. 2016; The first identification and complete genome of Senecavirus a affecting pig with idiopathic vesicular disease in China. Transbound Emerg Dis [View Article][PubMed]
    [Google Scholar]
  33. Yang X., Charlebois P., Gnerre S., Coole M. G., Lennon N. J., Levin J. Z., Qu J., Ryan E. M., Zody M. C., Henn M. R. 2012; De novo assembly of highly diverse viral populations. BMC Genomics 13:475 [View Article]
    [Google Scholar]
  34. Zhang Z., Alexandersen S. 2004; Quantitative analysis of foot-and-mouth disease virus RNA loads in bovine tissues: implications for the site of viral persistence. J Gen Virol 85:2567–2575 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000631
Loading
/content/journal/jgv/10.1099/jgv.0.000631
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed