1887

Abstract

Genotype G3P[8] of rotavirus A (RVA) is detected worldwide, usually associated with Wa-like constellation and exhibiting a long RNA migration pattern. More recently, a novel inter-genogroup, G3P[8] reassortant variant with a short electropherotype, has emerged in Asia, Oceania and Europe, denoting an overall potential of unusual rotavirus strains. During a RVA surveillance in Brazil, G3P[8] strains were found displaying a short electropherotype pattern, which had not been detected before in this region. This study aims to characterize the complete genome of 10 G3P[8] strains detected in the northern region of Brazil. All G3P[8] samples were subjected to partial sequencing, and the whole-genome phylogenetic analysis demonstrated that all strains possessed I2-R2-C2-M2-A2-N1-T2-E2-H2 genotype background, representing reassortants with an equine-like G3 VP7 and amino acid changes in VP4 and VP7 antigenic regions as compared to vaccine strains. Phylogenetic analysis demonstrated high nucleotide identity in almost all RNA segments of G3P[8] DS-1 samples detected in Asia, Oceania and Europe as well as G3P[4] strains in Japan. This study reports a novel, equine-like G3P[8] strain circulating in Brazil and isolated from children hospitalized for severe gastroenteritis, and highlights the complex dynamics of RVA molecular epidemiology. Our findings point to a novel RVA strain emerging in this region, and studies should be done to detect whether this may represent a challenge to current vaccine strategies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000626
2016-12-16
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/12/3131.html?itemId=/content/journal/jgv/10.1099/jgv.0.000626&mimeType=html&fmt=ahah

References

  1. Aoki S. T., Settembre E. C., Trask S. D., Greenberg H. B., Harrison S. C., Dormitzer P. R..( 2009;). Structure of rotavirus outer-layer protein VP7 bound with a neutralizing fab. . Science 324: 1444–1447. [CrossRef] [PubMed]
    [Google Scholar]
  2. Boom R., Sol C., Wertheim-van Dillen P..( 1990;). Rapid purification of ribosomal RNAs from neutral agarose gels. . Nucleic Acids Res 18: 2195. [CrossRef]
    [Google Scholar]
  3. Both G. W., Siegman L. J., Bellamy A. R., Ikegami N., Shatkin A. J., Furuichi Y..( 1984;). Comparative sequence analysis of rotavirus genomic segment 6 – the gene specifying viral subgroups 1 and 2. . J Virol 51: 97–101.[PubMed]
    [Google Scholar]
  4. Costa I., Linhares A. C., Cunha M. H., Tuboi S., Argüello D. F., Justino M. C. A., Gopala K., Ortega-Barria E., Colindres R..( 2016;). Sustained decrease in gastroenteritis-related deaths and hospitalizations in children less than 5 years of age after the introduction of rotavirus vaccination: a time-trend analysis in Brazil (2001-2010). . Pediatr Infect Dis J 35: e180e190. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cowley D., Donato C. M., Roczo-Farkas S., Kirkwood C. D..( 2016;). Emergence of a novel equine-like G3P[8] inter-genogroup reassortant rotavirus strain associated with gastroenteritis in Australian children. . J Gen Virol 97: 403–410. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cunliffe N. A., Woods P. A., Leite J. P., Das B. K., Ramachandran M., Bhan M. K., Hart C. A., Glass R., Gentsch J. R..( 1997;). Sequence analysis of NSP4 gene of human rotavirus allows classification into two main genetic groups. . J Med Virol 53: 41–50. [CrossRef] [PubMed]
    [Google Scholar]
  7. Das J. K., Bhutta Z. A..( 2016;). Global challenges in acute diarrhea. . Curr Opin Gastroenterol 32: 18–23. [CrossRef] [PubMed]
    [Google Scholar]
  8. Donato C. M., Manuelpillai N. M., Cowley D., Roczo-Farkas S., Buttery J. P., Crawford N. W., Kirkwood C. D..( 2014;). Genetic characterization of a novel G3P[14] rotavirus strain causing gastroenteritis in 12 year old Australian child. . Infect Genet Evol 25: 97–109.[CrossRef]
    [Google Scholar]
  9. Dormitzer P. R., Sun Z.-Y., Wagner G., Harrison S. C..( 2002;). The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. . EMBO J 21: 885–897. [CrossRef] [PubMed]
    [Google Scholar]
  10. Dormitzer P. R., Nason E. B., Prasad B., Harrison S. C..( 2004;). Structural rearrangements in the membrane penetration protein of a non-enveloped virus. . Nature 430: 1053–1058. [CrossRef] [PubMed]
    [Google Scholar]
  11. Fujii Y., Nakagomi T., Nishimura N., Noguchi A., Miura S., Ito H., Doan Y. H., Takahashi T., Ozaki T. et al.( 2014;). Spread and predominance in Japan of novel G1P[8] double-reassortant rotavirus strains possessing a DS-1-like genotype constellation typical of G2P[4] strains. . Infect Genet Evol 28: 426–433. [CrossRef]
    [Google Scholar]
  12. Garaicoechea L., Miño S., Ciarlet M., Fernández F., Barrandeguy M., Parreño V..( 2011;). Molecular characterization of equine rotaviruses circulating in Argentinean foals during a 17-year surveillance period (1992-2008). . Vet Microbiol 148: 150–160. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gentsch J. R., Glass R., Woods P., Gouvea V., Gorziglia M., Flores J., Das B. K., Bhan M. K..( 1992;). Identification of group A rotavirus gene 4 types by polymerase chain reaction. . J Clin Microbiol 30: 1365–1373.[PubMed]
    [Google Scholar]
  14. Gouvea V., Glass R., Woods P., Taniguchi K., Clark H. F., Forrester B., Fang Z. Y..( 1990;). Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. . J Clin Microbiol 28: 276–282.[PubMed]
    [Google Scholar]
  15. Grant L., Esona M., Gentsch J., Watt J., Reid R., Weatherholtz R., Santosham M., Parashar U., O'Brien K..( 2011;). Detection of G3P[3] and G3P[9] rotavirus strains in American Indian children with evidence of gene reassortment between human and animal rotaviruses. . J Med Virol 83: 1288–1299. [CrossRef] [PubMed]
    [Google Scholar]
  16. Greenwood B..( 2014;). The contribution of vaccination to global health: past, present and future. . Philos Trans R Soc Lond B Biol Sci 369: 20130433. [CrossRef] [PubMed]
    [Google Scholar]
  17. Guerra S. F. S., Linhares A. C., Mascarenhas J. D. P., Oliveira A., Justino M. C. A., Soares L. S., Müller E. C., Brasil P., Tuboi S. et al.( 2015;). Rotavirus strain surveillance for three years following the introduction of rotavirus vaccine into Belém, Brazil. . J Med Virol 87: 1303–1310. [CrossRef] [PubMed]
    [Google Scholar]
  18. Gulati B. R., Deepa R., Singh B. K., Rao C. D..( 2007;). Diversity in Indian equine rotaviruses: identification of genotype G10, P6[1] and G1 strains and a new VP7 genotype (G16) strain in specimens from diarrheic foals in India. . J Clin Microbiol 45: 2354. [CrossRef] [PubMed]
    [Google Scholar]
  19. ICTV Virus Taxonomy( 2015;). Available from: http://www.ictvonline.org/virustaxonomy.asp
  20. Kimura M..( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  21. Komoto S., Tacharoenmuang R., Guntapong R., Ide T., Haga K., Katayama K., Kato T., Ouchi Y., Kurahashi H. et al.( 2015;). Emergence and characterization of unusual DS-1-like G1P[8] rotavirus strains in children with diarrhea in Thailand. . PLoS One 10: e0141739. [CrossRef] [PubMed]
    [Google Scholar]
  22. Komoto S., Tacharoenmuang R., Guntapong R., Ide T., Tsuji T., Yoshikawa T., Tharmaphornpilas P., Sangkitporn S., Taniguchi K..( 2016;). Reassortment of human and animal rotavirus gene segments in emerging DS-1-like G1P[8] rotavirus strains. . PLoS One 11: e0148416. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kuzuya M., Fujii R., Hamano M., Kida K., Mizoguchi Y., Kanadani T., Nishimura K., Kishimoto T..( 2014;). Prevalence and molecular characterization of G1P[8] human rotaviruses possessing DS-1-like VP6, NSP4, and NSP5/6 in Japan. . J Med Virol 86: 1056–1064. [CrossRef] [PubMed]
    [Google Scholar]
  24. Linhares A. C., Justino M. C. A..( 2014;). Rotavirus vaccination in Brazil: effectiveness and health impact seven years post-introduction. . Expert Rev Vaccines 13: 43–57. [CrossRef] [PubMed]
    [Google Scholar]
  25. Maestri R. P., Kaiano J. H. L., Neri D. L., Soares L. da S., Guerra S. de F. D. S., Oliveira D. de S., Farias Y. N., Gabbay Y. B., Leite J. P. G. et al.( 2012;). Phylogenetic analysis of probable non-human genes of group A rotaviruses isolated from children with acute gastroenteritis in Belém, Brazil. . J Med Virol 84: 1993–2002. [CrossRef] [PubMed]
    [Google Scholar]
  26. Malasao R., Saito M., Suzuki A., Imagawa T., Nukiwa-Soma N., Tohma K., Liu X., Okamoto M., Chaimongkol N. et al.( 2015;). Human G3P[4] rotavirus obtained in Japan, 2013, possibly emerged through a human-equine rotavirus reassortment event. . Virus Genes 50: 129–133. [CrossRef] [PubMed]
    [Google Scholar]
  27. Malik Y. S., Kumar N., Sharma K., Saurabh S., Dhama K., Prasad M., Ghosh S., Bányai K., Kobayashi N., Singh R. K..( 2016;). Multispecies reassortant bovine rotavirus strain carries a novel simian G3-like VP7 genotype. . Infect Genet Evol 41: 63–72. [CrossRef]
    [Google Scholar]
  28. Mascarenhas J. D. P., Linhares A. C., Gabbay Y. B., Lima C. S., Guerra S. de F. S., Soares L. S., Oliveira D. S., Lima J. C., Macêdo O., Leite J. P. G..( 2007;). Molecular characterization of VP4 and NSP4 genes from rotavirus strains infecting neonates and young children in Belém, Brazil. . Virus Res 126: 149–158. [CrossRef] [PubMed]
    [Google Scholar]
  29. Matthijnssens J., Rahman M., Martella V., Xuelei Y., De Vos S., De Leener K., Ciarlet M., Buonavoglia C., Van Ranst M..( 2006;). Full genomic analysis of human rotavirus strain B4106 and lapine rotavirus strain 30/96 provides evidence for interspecies transmission. . J Virol 80: 3801–3810. [CrossRef] [PubMed]
    [Google Scholar]
  30. Matthijnssens J., Ciarlet M., Rahman M., Attoui H., Bányai K., Estes M. K., Gentsch J. R., Iturriza-Gómara M., Kirkwood C. D. et al.( 2008;). Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. . Arch Virol 153: 1621–1629. [CrossRef] [PubMed]
    [Google Scholar]
  31. Matthijnssens J., Bilcke J., Ciarlet M., Martella V., Bányai K., Rahman M., Zeller M., Beutels P., Van Damme P., Van Ranst M..( 2009;). Rotavirus disease and vaccination: impact on genotype diversity. . Future Microbiol 4: 1303–1316.[CrossRef]
    [Google Scholar]
  32. Matthijnssens J., Otto P. H., Ciarlet M., Desselberger U., Van Ranst M., Johne R..( 2012;). VP6-sequence-based cutoff values as a criterion for rotavirus species demarcation. . Arch Virol 157: 1177–1182.[CrossRef]
    [Google Scholar]
  33. Medici M. C., Tummolo F., Martella V., Arcangeletti M. C., De Conto F., Chezzi C., Magrì A., Fehér E., Marton S. et al.( 2016;). Whole genome sequencing reveals genetic heterogeneity of G3P[8] rotaviruses circulating in Italy. . Infect Genet Evol 40: 253–261.[CrossRef]
    [Google Scholar]
  34. Mihalov-Kovács E., Gellért Á., Marton S., Farkas S. L., Fehér E., Oldal M., Jakab F., Martella V., Bányai K..( 2015;). Candidate new rotavirus species in sheltered dogs, Hungary. . Emerg Infect Dis 21: 660–663. [CrossRef] [PubMed]
    [Google Scholar]
  35. Morozova O. V, Sashina T. A., Fomina S. G., Novikova N. A..( 2015;). Comparative characteristics of the VP7 and VP4 antigenic epitopes of the rotaviruses circulating in Russia (Nizhny Novgorod) and the rotarix and rotateq vaccines. . Arch Virol 160: 1693–1703.[CrossRef]
    [Google Scholar]
  36. Nemoto M., Nagai M., Tsunemitsu H., Omatsu T., Furuya T., Shirai J., Kondo T., Fujii Y., Todaka R. et al.( 2015;). Whole-genome sequence analysis of G3 and G14 equine group A rotaviruses isolated in the late 1990s and 2009-2010. . Arch Virol 160: 1171–1179. [CrossRef] [PubMed]
    [Google Scholar]
  37. Papp H., Matthijnssens J., Martella V., Ciarlet M., Bányai K..( 2013;). Global distribution of group A rotavirus strains in horses: a systematic review. . Vaccine 31: 5627–5633. [CrossRef] [PubMed]
    [Google Scholar]
  38. Parashar U. D., Johnson H., Steele A. D., Tate J. E..( 2016;). Health impact of rotavirus vaccination in developing countries: progress and way forward. . Clin Infect Dis 62: S91–S95. [CrossRef]
    [Google Scholar]
  39. Patel M., Pedreira C., De Oliveira L. H., Umaña J., Tate J., Lopman B., Sanchez E., Reyes M., Mercado J. et al.( 2012;). Duration of protection of pentavalent rotavirus vaccination in Nicaragua. . Pediatrics 130: e365372. [CrossRef] [PubMed]
    [Google Scholar]
  40. PATH( 2015;). Country Introduction Table EN 2015.04.01.pdf. . Available from : http://sites.path.org/rotavirusvaccine/files/2015/04/PATH-Country-Introduction-Table-EN.pdf
  41. Patton J. T..( 2012;). Rotavirus diversity and evolution in the post-vaccine world. . Discov Med 13: 85–97.[PubMed]
    [Google Scholar]
  42. Pereira H. G., Azeredo R. S., Leite J. P., Barth O. M., Sutmoller F., de Farias V., Vidal M. N..( 1983;). Comparison of polyacrylamide gel electrophoresis (PAGE), immuno-electron microscopy (IEM) and enzyme immunoassay (EIA) for the rapid diagnosis of rotavirus infection in children. . Mem Inst Oswaldo Cruz 78: 483–490. [CrossRef] [PubMed]
    [Google Scholar]
  43. Silva M. F. M. da., Rose T. L., Gómez M. M., Carvalho-Costa F. A., Fialho A. M., Assis R. M. S. de., Andrade J. da S. R. de., Volotão E. de M., Leite J. P. G..( 2015;). G1P[8] species A rotavirus over 27 years – pre- and post-vaccination eras – in Brazil: full genomic constellation analysis and no evidence for selection pressure by Rotarix® vaccine. . Infect Genet Evol 30: 206–218.[CrossRef]
    [Google Scholar]
  44. Soares L. S., Guerra S. F. S., Oliveira A. S. L., Santos F. S., Menezes E. M. F. C., Mascarenhas J. D. P., Linhares A. C..( 2014;). Diversity of rotavirus strains circulating in Northern Brazil after introduction of a rotavirus vaccine: high prevalence of G3P[6] genotype. . J Med Virol 86: 1065–1072.[CrossRef]
    [Google Scholar]
  45. Tate J. E., Burton A. H., Boschi-Pinto C., Parashar U. D.. World Health Organization–Coordinated Global Rotavirus Surveillance Network( 2016;). Global, regional, and national estimates of rotavirus mortality in children <5 years of age, 2000-2013. . Clin Infect Dis 62: S96–S105.[CrossRef]
    [Google Scholar]
  46. Varghese V., Ghosh S., Das S., Bhattacharya S. K., Krishnan T., Karmakar P., Kobayashi N., Naik T. N..( 2006;). Characterization of VP1, VP2 and VP3 gene segments of a human rotavirus closely related to porcine strains. . Virus Genes 32: 241–247.[CrossRef]
    [Google Scholar]
  47. WHO( 2015;). Global Rotavirus Surveillance and Information Bulletin. . Available from http://www.who.int/immunization/monitoring_surveillance/resources/WHO_Global_RV_Surv_Bulletin_Jan_2015_Final.pdf.
  48. Yamamoto S. P., Kaida A., Kubo H., Iritani N..( 2014;). Gastroenteritis outbreaks caused by a DS-1-like G1P[8] rotavirus strain, Japan, 2012-2013. . Emerg Infect Dis 20: 1030–1033. [CrossRef] [PubMed]
    [Google Scholar]
  49. Zeller M., Patton J. T., Heylen E., De Coster S., Ciarlet M., Van Ranst M., Matthijnssens J..( 2012;). Genetic analyses reveal differences in the VP7 and VP4 antigenic epitopes between human rotaviruses circulating in Belgium and rotaviruses in Rotarix and RotaTeq. . J Clin Microbiol 50: 966–976. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000626
Loading
/content/journal/jgv/10.1099/jgv.0.000626
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error