1887

Abstract

The pathogenesis of H9N2 subtype avian influenza virus infection (AIV) in hens is often related to oviduct tissue damage. The viral non-structural NS1 protein is thought to play a key role in regulating the pathogenicity of AIV, but its exact function in this process remains elusive. In this study, the pro-apoptosis effect of H9N2 NS1 protein was examined on chicken oviduct epithelial cells (COECs) and our data indicated that NS1-induced oxidative stress was a contributing factor in apoptosis. Our data indicate that NS1 protein level was correlated with reactive oxygen species (ROS) in COECs transfected with NS1 expression plasmids. Interestingly, decreased activities of antioxidant enzymes, superoxide dismutase and catalase, were observed in NS1-transfected COECs. Treatment of COECs with antioxidants, such as pyrrolidine dithiocarbamate (PDTC) or -acetylcysteine (NAC), significantly inhibited NS1-induced apoptosis. Moreover, although antioxidant treatment has little effect on the activation of caspase-8 in NS1-transfected cells, the activation of caspase-3/9 and Bax/Bcl-2 were significantly downregulated. Taken together, the results of our study demonstrated that expression of H9N2 NS1 alone is sufficient to trigger oxidative stress in COECs. Additionally, NS1 protein can induce cellular apoptosis via activating ROS accumulation and mitochondria-mediated apoptotic signalling in COECs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000625
2016-12-16
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/12/3183.html?itemId=/content/journal/jgv/10.1099/jgv.0.000625&mimeType=html&fmt=ahah

References

  1. Abolnik C., Bisschop S. P., Gerdes G. H., Olivier A. J., Horner R. F.. 2007; Phylogenetic analysis of low-pathogenicity avian influenza H6N2 viruses from chicken outbreaks (2001–2005) suggest that they are reassortants of historic ostrich low-pathogenicity avian influenza H9N2 and H6N8 viruses. Avian Dis1:279–284[CrossRef]
    [Google Scholar]
  2. Akaike T., Noguchi Y., Ijiri S., Setoguchi K., Suga M., Zheng Y. M., Dietzschold B., Maeda H.. 1996; Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc Natl Acad Sci U S A93:2448–2453 [CrossRef][PubMed]
    [Google Scholar]
  3. Bensaad K., Vousden K. H.. 2005; Savior and slayer: the two faces of p53. Nat Med11:1278–1279 [CrossRef][PubMed]
    [Google Scholar]
  4. Bi J. M., Deng G. C., Dong J., Kong F. L., Li X. Z., Xu Q. A., Zhang M. J., Zhao L. H., Qiao J. A.. 2010; Phylogenetic and molecular characterization of H9N2 influenza isolates from chickens in Northern China from 2007–2009. PLoS One9:e13063
    [Google Scholar]
  5. Circu M. L., Aw T. Y.. 2010; Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med48:749–762 [CrossRef][PubMed]
    [Google Scholar]
  6. De Mochel N. S., Seronello S., Wang S. H., Ito C., Zheng J. X., Liang T. J., Lambeth J. D., Choi J.. 2010; Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection. Hepatology52:47–59 [CrossRef][PubMed]
    [Google Scholar]
  7. Dimayuga F. O., Wang C., Clark J. M., Dimayuga E. R., Dimayuga V. M., Bruce-Keller A. J.. 2007; SOD1 overexpression alters ROS production and reduces neurotoxic inflammatory signaling in microglial cells. J Neuroimmunol182:89–99 [CrossRef][PubMed]
    [Google Scholar]
  8. Ebers K. L., Zhang C. Y., Zhang M. Z., Bailey R. H., Zhang S.. 2009; Transcriptional profiling avian beta-defensins in chicken oviduct epithelial cells before and after infection with Salmonella enterica serovar enteritidis. BMC Microbiol9:153 [CrossRef][PubMed]
    [Google Scholar]
  9. Ehrhardt C., Wolff T., Pleschka S., Planz O., Beermann W., Bode J. G., Schmolke M., Ludwig S.. 2007; Influenza A virus NS1 protein activates the PI3K/Akt pathway to mediate antiapoptotic signaling responses. J Virol81:3058–3067 [CrossRef][PubMed]
    [Google Scholar]
  10. Gonzalez-Dosal R., Horan K. A., Rahbek S. H., Ichijo H., Chen Z. J., Mieyal J. J., Hartmann R., Paludan S. R.. 2011; HSV infection induces production of ROS, which potentiate signaling from pattern recognition receptors: role for S-glutathionylation of TRAF3 and 6. PLoS Pathog7:e1002250 [CrossRef][PubMed]
    [Google Scholar]
  11. Hale B. G., Randall R. E., Ortín J., Jackson D.. 2008; The multifunctional NS1 protein of influenza A viruses. J Gen Virol89:2359–2376 [CrossRef][PubMed]
    [Google Scholar]
  12. Han X., Li Z., Chen H., Wang H., Mei L., Wu S., Zhang T., Liu B., Lin X.. 2012; Influenza virus A/Beijing/501/2009(H1N1) NS1 interacts with β-tubulin and induces disruption of the microtubule network and apoptosis on A549 cells. PLoS One7:e48340 [CrossRef][PubMed]
    [Google Scholar]
  13. Iwai A., Shiozaki T., Miyazaki T.. 2013; Relevance of signaling molecules for apoptosis induction on influenza A virus replication. Biochem Biophys Res Commun441:531–537 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim S. J., Wong P. K.. 2013; ROS upregulation during the early phase of retroviral infection plays an important role in viral establishment in the host cell. J Gen Virol94:2309–2317 [CrossRef][PubMed]
    [Google Scholar]
  15. Kim S. J., Wong P. K.. 2015; p53 as a retrovirus-induced oxidative stress modulator. J Gen Virol96:144–149 [CrossRef][PubMed]
    [Google Scholar]
  16. Kim J. A., Cho S. H., Kim H. S., Seo S. H.. 2006; H9N2 influenza viruses isolated from poultry in Korean live bird markets continuously evolve and cause the severe clinical signs in layers. Vet Microbiol118:169–176 [CrossRef][PubMed]
    [Google Scholar]
  17. Kwon J. S., Lee H. J., Lee D. H., Lee Y. J., Mo I. P., Nahm S. S., Kim M. J., Lee J. B., Park S. Y. et al. 2008; Immune responses and pathogenesis in immunocompromised chickens in response to infection with the H9N2 low pathogenic avian influenza virus. Virus Res133:187–194 [CrossRef][PubMed]
    [Google Scholar]
  18. Lam W. Y., Tang J. W., Yeung A. C. M., Chiu L. C. M., Sung J. J. Y., Chan P. K. S.. 2008; Avian influenza virus A/HK/483/97(H5N1) NS1 protein induces apoptosis in human airway epithelial cells. J Virol82:2741–2751 [CrossRef][PubMed]
    [Google Scholar]
  19. Lam W. Y., Yeung A. C., Chan P. K.. 2011; Apoptosis, cytokine and chemokine induction by non-structural 1 (NS1) proteins encoded by different influenza subtypes. Virol J8:554 [CrossRef][PubMed]
    [Google Scholar]
  20. Lin X., Wang R. F., Zou W., Sun X., Liu X. K., Zhao L. Z., Wang S. Y., Jin M. L.. 2016; The influenza virus H5N1 infection can induce ROS production for viral replication and host cell death in A549 cells modulated by human Cu/Zn superoxide dismutase (SOD1) overexpression. Viruses8:13 [CrossRef]
    [Google Scholar]
  21. Marsden V. S., O'Connor L., O'Reilly L. A., Silke J., Metcalf D., Ekert P. G., Huang D. C., Cecconi F., Kuida K. et al. 2002; Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature419:634–637 [CrossRef][PubMed]
    [Google Scholar]
  22. Pantin-Jackwood M. J., Smith D. M., Wasilenko J. L., Spackman E.. 2012; Low pathogenicity avian influenza viruses infect chicken layers by different routes of inoculation. Avian Dis56:276–281 [CrossRef][PubMed]
    [Google Scholar]
  23. Peterhans E., Grob M., Bürge T., Zanoni R.. 1987; Virus-induced formation of reactive oxygen intermediates in phagocytic cells. Free Radic Res Commun3:39–46 [CrossRef][PubMed]
    [Google Scholar]
  24. Pyo C. W., Shin N., Jung K., Choi J. H., Choi S. Y.. 2014; Alteration of copper–zinc superoxide dismutase 1 expression by influenza A virus is correlated with virus replication. Biochem Biophys Res Commun450:711–716 [CrossRef][PubMed]
    [Google Scholar]
  25. Qi X. F., Tan D., Wu C. Q., Tang C., Li T., Han X. Y., Wang J., Liu C. H., Li R. Q., Wang J. Y.. 2016; Deterioration of eggshell quality in laying hens experimentally infected with H9N2 avian influenza virus. Vet Res47:35–44 [CrossRef][PubMed]
    [Google Scholar]
  26. Reed L. J., Muench H.. 1938; A simple method of estimating fifty percent endpoints. Am J Hyg27:493–497
    [Google Scholar]
  27. Sanghavi D. M., Thelen M., Thornberry N. A., Casciola-Rosen L., Rosen A.. 1998; Caspase-mediated proteolysis during apoptosis: insights from apoptotic neutrophils. FEBS Lett422:179–184 [CrossRef][PubMed]
    [Google Scholar]
  28. Scherz-Shouval R., Elazar Z.. 2007; ROS, mitochondria and the regulation of autophagy. Trends Cell Biol17:422–427 [CrossRef][PubMed]
    [Google Scholar]
  29. Seo S. H., Hoffmann E., Webster R. G.. 2002; Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med8:950–954 [CrossRef][PubMed]
    [Google Scholar]
  30. Sharpe J. C., Arnoult D., Youle R. J.. 2004; Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta1644:107–113 [CrossRef]
    [Google Scholar]
  31. Shin Y. K., Liu Q., Tikoo S. K., Babiuk L. A., Zhou Y.. 2007; Influenza A virus NS1 protein activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway by direct interaction with the p85 subunit of PI3K. J Gen Virol88:13–18 [CrossRef][PubMed]
    [Google Scholar]
  32. Shin N., Pyo C. W., Jung K., Choi S. Y.. 2015; Influenza A virus PB1-F2 is involved in regulation of cellular redox state in alveolar epithelial cells. Biochem Biophys Res Commun459:699–705 [CrossRef][PubMed]
    [Google Scholar]
  33. Wang J. Y., Ren J. J., Liu W. H., Tang P., Wu N., Wang C. Y., Chang C. D., Liu H. J.. 2013; Complete genome sequence of a new H9N2 avian influenza virus isolated in China. Genome Announc1:e00261-13 [CrossRef][PubMed]
    [Google Scholar]
  34. Wang J.-Y., Chen Z.-L., Li C.-S., Cao X. I., Wang R., Tang C., Huang J.-J., Chang C.-D., Liu H.-J.. 2015a; The distribution of sialic acid receptors of avian influenza virus in the reproductive tract of laying hens. Mol Cell Probes29:129–134 [CrossRef]
    [Google Scholar]
  35. Wang J. Y., Tang C., Wang Q. Z., Li R., Chen Z. L., Han X. Y., Wang J., Xu X. G.. 2015b; Apoptosis induction and release of inflammatory cytokines in the oviduct of egg-laying hens experimentally infected with H9N2 avian influenza virus. Vet Microbiol177:302–314 [CrossRef]
    [Google Scholar]
  36. Wurzer W. J., Ehrhardt C., Pleschka S., Berberich-Siebelt F., Wolff T., Walczak H., Planz O., Ludwig S.. 2004; NF-κB-dependent induction of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and FAS/FASl is crucial for efficient influenza virus propagation. J Biol Chem279:30931–30937 [CrossRef][PubMed]
    [Google Scholar]
  37. Xing Z., Cardona C. J., Adams S., Yang Z., Li J., Perez D., Woolcock P. R.. 2009; Differential regulation of antiviral and proinflammatory cytokines and suppression of fas-mediated apoptosis by NS1 of H9N2 avian influenza virus in chicken macrophages. J Gen Virol90:1109–1118 [CrossRef][PubMed]
    [Google Scholar]
  38. Yan Y., Du Y., Wang G., Deng Y., Li R., Li K.. 2016; The novel H7N9 influenza A virus NS1 induces p53-mediated apoptosis of A549 cells. Cell Physiol Biochem38:1447–1458 [CrossRef][PubMed]
    [Google Scholar]
  39. Zhang P., Tang Y., Liu X., Peng D., Liu W., Liu H., Lu S., Liu X.. 2008; Characterization of H9N2 influenza viruses isolated from vaccinated flocks in an integrated broiler chicken operation in eastern China during a 5 year period (1998–2002). J Gen Virol89:3102–3112 [CrossRef][PubMed]
    [Google Scholar]
  40. Zhang J., Miao J., Hou J., Lu C.. 2015; Mitochondrial antiviral signaling adaptor mediated apoptosis in H3N2 swine influenza virus infection is inhibited by viral protein NS1 in vitro. Vet Immunol Immunopathol165:34–44 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000625
Loading
/content/journal/jgv/10.1099/jgv.0.000625
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error