Newcastle disease virus degrades HIF-1α through proteasomal pathways independent of VHL and p53 Open Access

Abstract

Newcastle disease virus (NDV) is a candidate agent for oncolytic virotherapy. Despite its potential, the exact mechanism of its oncolysis is still not known. Recently, we reported that NDV exhibited an increased oncolytic activity in hypoxic cancer cells. These types of cells negatively affect therapeutic outcome by overexpressing pro-survival genes under the control of the hypoxia-inducible factor (HIF). HIF-1 is a heterodimeric transcriptional factor consisting of a regulated α (HIF-1α) and a constitutive β subunit (HIF-1β). To investigate the effects of NDV infection on HIF-1α in cancer cells, the osteosarcoma (Saos-2), breast carcinoma (MCF-7), colon carcinoma (HCT116) and fibrosarcoma (HT1080) cell lines were used in the present study. Data obtained showed that a velogenic NDV infection diminished hypoxia-induced HIF-1α accumulation, leading to a decreased activation of its downstream target gene, . This NDV-induced downregulation of HIF-1α occurred post-translationally and was partially abrogated by proteasomal inhibition. The process appeared to be independent of the tumour suppressor protein p53. These data revealed a correlation between NDV infection and HIF-1α downregulation, which highlights NDV as a promising agent to eliminate hypoxic cancer cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000623
2016-12-16
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/12/3174.html?itemId=/content/journal/jgv/10.1099/jgv.0.000623&mimeType=html&fmt=ahah

References

  1. Abd-Aziz N., Stanbridge E. J., Shafee N. 2015; Bortezomib attenuates HIF-1- but not HIF-2-mediated transcriptional activation. Oncol Lett 10:2192–2196 [View Article][PubMed]
    [Google Scholar]
  2. Alabsi A. M., Ali R., Ideris A., Omar A. R., Bejo M. H., Yusoff K., Ali A. M. 2012; Anti-leukemic activity of Newcastle disease virus strains AF2240 and V4-UPM in murine myelomonocytic leukemia in vivo. Leuk Res 36:634–645 [View Article][PubMed]
    [Google Scholar]
  3. Aldous E. W., Alexander D. J. 2001; Detection and differentiation of Newcastle disease virus (avian paramyxovirus type 1). Avian Pathol 30:117–128 [View Article][PubMed]
    [Google Scholar]
  4. Anderson M. J., Casey G., Fasching C. L., Stanbridge E. J. 1994; Evidence that wild-type TP53, and not genes on either chromosome 1 or 11, controls the tumorigenic phenotype of the human fibrosarcoma HT1080. Genes Chromosomes Cancer 9:266–281 [View Article][PubMed]
    [Google Scholar]
  5. Cai Q., Murakami M., Si H., Robertson E. S. 2007; A potential α-helix motif in the amino terminus of LANA encoded by Kaposi's sarcoma-associated herpesvirus is critical for nuclear accumulation of HIF-1α in normoxia. J Virol 81:10413–10423 [View Article][PubMed]
    [Google Scholar]
  6. Carroll P. A., Kenerson H. L., Yeung R. S., Lagunoff M. 2006; Latent Kaposi's sarcoma-associated herpesvirus infection of endothelial cells activates hypoxia-induced factors. J Virol 80:10802–10812 [View Article][PubMed]
    [Google Scholar]
  7. Ch'ng W.-C., Stanbridge E. J., Yusoff K., Shafee N. 2013; The oncolytic activity of Newcastle disease virus in clear cell renal carcinoma cells in normoxic and hypoxic conditions: the interplay between von Hippel-Lindau and interferon-β signaling. J Interferon Cytokine Res 33:346–354 [View Article]
    [Google Scholar]
  8. Ch'ng W.-C., Abd-Aziz N., Ong M.-H., Stanbridge E. J., Shafee N. 2015; Human renal carcinoma cells respond to Newcastle disease virus infection through activation of the p38 MAPK/NF-κB/IκBα pathway. Cell Oncol 38:279–288 [View Article]
    [Google Scholar]
  9. Chia S. L., Tan W. S., Yusoff K., Shafee N. 2012; Plaque formation by a velogenic Newcastle disease virus in human colorectal cancer cell lines. Acta Virol 56:345–347 [View Article][PubMed]
    [Google Scholar]
  10. Chia S. L., Yusoff K., Shafee N. 2014; Viral persistence in colorectal cancer cells infected by Newcastle disease virus. Virol J 11:91 [View Article][PubMed]
    [Google Scholar]
  11. Cho I. R., Koh S. S., Min H. J., Park E. H., Ratakorn S., Jhun B. H., Jeong S. H., Yoo Y. H., Youn H. D. et al. 2010; Down-regulation of HIF-1α by oncolytic reovirus infection independently of VHL and p53. Cancer Gene Ther 17:365–372 [View Article][PubMed]
    [Google Scholar]
  12. Cianchi F., Vinci M. C., Supuran C. T., Peruzzi B., De Giuli P., Fasolis G., Perigli G., Pastorekova S., Papucci L. et al. 2010; Selective inhibition of carbonic anhydrase IX decreases cell proliferation and induces ceramide-mediated apoptosis in human cancer cells. J Pharmacol Exp Ther 334:710–719 [View Article][PubMed]
    [Google Scholar]
  13. Connor J. H., Naczki C., Koumenis C., Lyles D. S. 2004; Replication and cytopathic effect of oncolytic vesicular stomatitis virus in hypoxic tumor cells in vitro and in vivo. J Virol 78:8960–8970 [View Article][PubMed]
    [Google Scholar]
  14. Driessen A., Landuyt W., Pastorekova S., Moons J., Goethals L., Haustermans K., Nafteux P., Penninckx F., Geboes K. et al. 2006; Expression of carbonic anhydrase IX (CA IX), a hypoxia-related protein, rather than vascular-endothelial growth factor (VEGF), a pro-angiogenic factor, correlates with an extremely poor prognosis in esophageal and gastric adenocarcinomas. Ann Surg 243:334–340 [View Article][PubMed]
    [Google Scholar]
  15. Dubois L., Peeters S., Lieuwes N. G., Geusens N., Thiry A., Wigfield S., Carta F., McIntyre A., Scozzafava A. et al. 2011; Specific inhibition of carbonic anhydrase IX activity enhances the in vivo therapeutic effect of tumor irradiation. Radiother Oncol 99:424–431 [View Article][PubMed]
    [Google Scholar]
  16. Grabmaier K., de Weijert M. C. A., Verhaegh G. W., Schalken J. A., Oosterwijk E. 2004; Strict regulation of CAIX(G250/MN) by HIF-1α in clear cell renal cell carcinoma. Oncogene 23:5624–5631 [View Article][PubMed]
    [Google Scholar]
  17. Gupta-Saraf P., Miller C. L. 2014; HIF-1α downregulation and apoptosis in hypoxic prostate tumor cells infected with oncolytic mammalian orthoreovirus. Oncotarget 5:561–574 [View Article][PubMed]
    [Google Scholar]
  18. Hiley C. T., Yuan M., Lemoine N. R., Wang Y. 2010; Lister strain vaccinia virus, a potential therapeutic vector targeting hypoxic tumours. Gene Ther 17:281–287 [View Article][PubMed]
    [Google Scholar]
  19. Huang W.-J., Jeng Y.-M., Lai H.-S., Fong I.-U., Sheu F.-Y., Lai P.-L., Yuan R.-H. 2015; Expression of hypoxic marker carbonic anhydrase IX predicts poor prognosis in resectable hepatocellular carcinoma. PLoS One 10:e0119181 [View Article][PubMed]
    [Google Scholar]
  20. Hwang I. I., Watson I. R., Der S. D., Ohh M. 2006; Loss of VHL confers hypoxia-inducible factor (HIF)-dependent resistance to vesicular stomatitis virus: role of HIF in antiviral response. J Virol 80:10712–10723 [View Article][PubMed]
    [Google Scholar]
  21. Jamal M. H., Ch'ng W.-C., Yusoff K., Shafee N. 2012; Reduced Newcastle disease virus-induced oncolysis in a subpopulation of cisplatin-resistant MCF7 cells is associated with survivin stabilization. Cancer Cell Int 12:35 [View Article][PubMed]
    [Google Scholar]
  22. Kaluz S., Kaluzová M., Stanbridge E. J. 2006; Proteasomal inhibition attenuates transcriptional activity of hypoxia-inducible factor 1 (HIF-1) via specific effect on the HIF-1α C-terminal activation domain. Mol Cell Biol 26:5895–5907 [View Article][PubMed]
    [Google Scholar]
  23. Kamura T., Maenaka K., Kotoshiba S., Matsumoto M., Kohda D., Conaway R. C., Conaway J. W., Nakayama K. I. 2004; VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes Dev 18:3055–3065 [View Article][PubMed]
    [Google Scholar]
  24. Kane R. C., Bross P. F., Farrell A. T., Pazdur R. 2003; Velcade®: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist 8:508–513 [View Article][PubMed]
    [Google Scholar]
  25. Kane R. C., Dagher R., Farrell A., Ko C.-W., Sridhara R., Justice R., Pazdur R. 2007; Bortezomib for the treatment of mantle cell lymphoma. Clin Cancer Res 13:5291–5294 [View Article][PubMed]
    [Google Scholar]
  26. Katschinski D. M., Le L., Heinrich D., Wagner K. F., Hofer T., Schindler S. G., Wenger R. H. 2002; Heat induction of the unphosphorylated form of hypoxia-inducible factor-1α is dependent on heat shock protein-90 activity. J Biol Chem 277:9262–9267 [View Article][PubMed]
    [Google Scholar]
  27. Lee S.-Y., Mustafa S., Ching Y.-W., Shafee N. 2017; Zinc induces normoxic accumulation of transcriptionally active hypoxia-inducible factor 1-α in mammary epithelial cells. Molecul Biol 51:1–7
    [Google Scholar]
  28. Li S. H., Shin D. H., Chun Y.-S., Lee M. K., Kim M.-S., Park J.-W. 2008; A novel mode of action of YC-1 in HIF inhibition: stimulation of FIH-dependent p300 dissociation from HIF-1{α}. Mol Cancer Ther 7:3729–3738 [View Article][PubMed]
    [Google Scholar]
  29. Liew S.-Y., Stanbridge E. J., Yusoff K., Shafee N. 2012; Hypoxia affects cellular responses to plant extracts. J Ethnopharmacol 144:453–456 [View Article][PubMed]
    [Google Scholar]
  30. Luke K. A. 2008 Regulation of the Cellular p53 Protein by the Influenza Non-Structural 1 (NS1) Protein Ann Arbor, MI: ProQuest LLC;
    [Google Scholar]
  31. Lungu G. F., Stoica G., Wong P. K. 2008; Down-regulation of Jab1, HIF-1α, and VEGF by Moloney murine leukemia virus-ts1 infection: a possible cause of neurodegeneration. J Neurovirol 14:239–251 [View Article][PubMed]
    [Google Scholar]
  32. Luo H., Zhang J., Cheung C., Suarez A., McManus B. M., Yang D. 2003; Proteasome inhibition reduces coxsackievirus B3 replication in murine cardiomyocytes. Am J Pathol 163:381–385 [View Article][PubMed]
    [Google Scholar]
  33. Masoud G. N., Li W. 2015; HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389 [View Article][PubMed]
    [Google Scholar]
  34. McDonald P. C., Winum J.-Y., Supuran C. T., Dedhar S. 2012; Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget 3:84–97 [View Article][PubMed]
    [Google Scholar]
  35. Morinet F., Casetti L., François J. H., Capron C., Pillet S. 2013; Oxygen tension level and human viral infections. Virology 444:31–36 [View Article][PubMed]
    [Google Scholar]
  36. Murulitharan K., Yusoff K., Omar A. R., Molouki A. 2013; Characterization of Malaysian velogenic NDV strain AF2240-I genomic sequence: a comparative study. Virus Genes 46:431–440 [View Article][PubMed]
    [Google Scholar]
  37. Piret J. P., Mottet D., Raes M., Michiels C. 2002; Is HIF-1α a pro- or an anti-apoptotic protein?. Biochem Pharmacol 64:889–892 [View Article][PubMed]
    [Google Scholar]
  38. Poch O., Blumberg B. M., Bougueleret L., Tordo N. 1990; Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J Gen Virol 71:1153–1162 [View Article][PubMed]
    [Google Scholar]
  39. Pozzebon M. E., Varadaraj A., Mattoscio D., Jaffray E. G., Miccolo C., Galimberti V., Tommasino M., Hay R. T., Chiocca S. 2013; BC-box protein domain-related mechanism for VHL protein degradation. Proc Natl Acad Sci U S A 110:18168–18173 [View Article][PubMed]
    [Google Scholar]
  40. Proescholdt M. A., Merrill M. J., Stoerr E. M., Lohmeier A., Pohl F., Brawanski A. 2012; Function of carbonic anhydrase IX in glioblastoma multiforme. Neuro Oncol 14:1357–1366 [View Article][PubMed]
    [Google Scholar]
  41. Raval R. R., Lau K. W., Tran M. G., Sowter H. M., Mandriota S. J., Li J. L., Pugh C. W., Maxwell P. H., Harris A. L., Ratcliffe P. J. 2005; Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25:5675–5686 [View Article][PubMed]
    [Google Scholar]
  42. Roos F. C., Roberts A. M., Hwang I. I., Moriyama E. H., Evans A. J., Sybingco S., Watson I. R., Carneiro L. A., Gedye C. et al. 2010; Oncolytic targeting of renal cell carcinoma via encephalomyocarditis virus. EMBO Mol Med 2:275–288 [View Article][PubMed]
    [Google Scholar]
  43. Schmid T., Zhou J., Brüne B. 2004; HIF-1 and p53: communication of transcription factors under hypoxia. J Cell Mol Med 8:423–431 [View Article][PubMed]
    [Google Scholar]
  44. Simon J.-M., Mokhtari K., Genestie C., Bissery A., Mazeron J.-J., Jaillon P. 2005; Hypoxia-inducible factor 1α (HIF-1{α}) and carbonic anhydrase IX (CA 9) expressions in glioblastoma multiform to predict response to radiation therapy. J Clin Oncol 23:1512 [CrossRef]
    [Google Scholar]
  45. Swietach P., Vaughan-Jones R. D., Harris A. L. 2007; Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev 26:299–310 [View Article][PubMed]
    [Google Scholar]
  46. Tarunina M., Jenkins J. R. 1993; Human p53 binds DNA as a protein homodimer but monomeric variants retain full transcription transactivation activity. Oncogene 8:3165–3173[PubMed]
    [Google Scholar]
  47. Vogelstein B., Lane D., Levine A. J. 2000; Surfing the p53 network. Nature 408:307–310 [View Article][PubMed]
    [Google Scholar]
  48. Yusoff K., Tan W. S. 2001; Newcastle disease virus: macromolecules and opportunities. Avian Pathol 30:439–455 [View Article][PubMed]
    [Google Scholar]
  49. Zhang Z., Protzer U., Hu Z., Jacob J., Liang T. J. 2004; Inhibition of cellular proteasome activities enhances hepadnavirus replication in an HBX-dependent manner. J Virol 78:4566–4572 [View Article][PubMed]
    [Google Scholar]
  50. Zhang Q., Tang X., Lu Q. Y., Zhang Z. F., Brown J., Le A. D. 2005; Resveratrol inhibits hypoxia-induced accumulation of hypoxia-inducible factor-1α and VEGF expression in human tongue squamous cell carcinoma and hepatoma cells. Mol Cancer Ther 4:1465–1474 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000623
Loading
/content/journal/jgv/10.1099/jgv.0.000623
Loading

Data & Media loading...

Most cited Most Cited RSS feed