Herpes simplex virus particles interact with chemokines and enhance cell migration Free

Abstract

Herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, respectively) are among the most prevalent human pathogens, causing a variety of diseases. HSV modulation of the chemokine network remains poorly understood. We have previously identified secreted glycoprotein G (SgG) as the first viral chemokine-binding protein that enhances chemokine function as a novel viral immunomodulatory mechanism. However, gG is also present at the viral envelope and its role in the virus particle remains unknown. Here we have addressed the chemokine-binding capacity of HSV particles and the functionality of such interaction . We adapted surface plasmon resonance assays and demonstrated the ability of HSV particles to bind a specific set of human chemokines with high affinity. Moreover, we identified gG as the envelope glycoprotein mediating such interaction, as shown by the lack of binding to a HSV-1 gG mutant. In contrast to HSV-1, HSV-2 gG is cleaved and the chemokine-binding domain is secreted (SgG2). However, we found that HSV-2 particles retain the ability to bind chemokines, potentially through SgG2 associated to the viral envelope or non-processed precursor protein. Moreover, we found that HSV particles increase cell migration independently of chemokine binding to envelope gG. This work provides insights into HSV manipulation of the host immune system.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000616
2016-11-10
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/11/3007.html?itemId=/content/journal/jgv/10.1099/jgv.0.000616&mimeType=html&fmt=ahah

References

  1. Abaitua F., Zia F. R., Hollinshead M., O'Hare P. 2013; Polarized cell migration during cell-to-cell transmission of herpes simplex virus in human skin keratinocytes. J Virol 87:7921–7932 [View Article][PubMed]
    [Google Scholar]
  2. Ackermann M., Longnecker R., Roizman B., Pereira L. 1986; Identification, properties, and gene location of a novel glycoprotein specified by herpes simplex virus 1. Virology 150:207–220 [View Article][PubMed]
    [Google Scholar]
  3. Alcami A. 2003; Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 3:36–50 [View Article][PubMed]
    [Google Scholar]
  4. Baggiolini M. 1998; Chemokines and leukocyte traffic. Nature 392:565–568 [View Article][PubMed]
    [Google Scholar]
  5. Balachandran N., Hutt-Fletcher L. M. 1985; Synthesis and processing of glycoprotein gG of herpes simplex virus type 2. J Virol 54:825–832[PubMed]
    [Google Scholar]
  6. Balan P., Davis-Poynter N., Bell S., Atkinson H., Browne H., Minson T. 1994; An analysis of the in vitro and in vivo phenotypes of mutants of herpes simplex virus type 1 lacking glycoproteins gG, gE, gI or the putative gJ. J Gen Virol 75:1245–1258 [View Article][PubMed]
    [Google Scholar]
  7. Bellner L., Thorén F., Nygren E., Liljeqvist J. A., Karlsson A., Eriksson K. 2005; A proinflammatory peptide from herpes simplex virus type 2 glycoprotein G affects neutrophil, monocyte, and NK cell functions. J Immunol 174:2235–2241 [View Article][PubMed]
    [Google Scholar]
  8. Casasnovas J. M., Springer T. A. 1995; Kinetics and thermodynamics of virus binding to receptor. Studies with rhinovirus, intercellular adhesion molecule-1 (ICAM-1), and surface plasmon resonance. J Biol Chem 270:13216–13224[PubMed] [CrossRef]
    [Google Scholar]
  9. Conrady C. D., Drevets D. A., Carr D. J. 2009; Herpes simplex type I (HSV-1) infection of the nervous system: is an immune response a good thing?. J Neuroimmunol 220:1–9 [View Article][PubMed]
    [Google Scholar]
  10. Cornaby C., Tanner A., Stutz E. W., Poole B. D., Berges B. K. 2015; Piracy on the molecular level: human herpesviruses manipulate cellular chemotaxis. J Gen Virol 97:543–560 [View Article][PubMed]
    [Google Scholar]
  11. Costes B., Ruiz-Argüello M. B., Bryant N. A., Alcami A., Vanderplasschen A. 2005; Both soluble and membrane-anchored forms of Felid herpesvirus 1 glycoprotein G function as a broad-spectrum chemokine-binding protein. J Gen Virol 86:3209–3214 [View Article][PubMed]
    [Google Scholar]
  12. Costes B., Thirion M., Dewals B., Mast J., Ackermann M., Markine-Goriaynoff N., Gillet L., Vanderplasschen A. 2006; Felid herpesvirus 1 glycoprotein G is a structural protein that mediates the binding of chemokines on the viral envelope. Microbes Infect 8:2657–2667 [View Article][PubMed]
    [Google Scholar]
  13. Davies D. H., McCausland M. M., Valdez C., Huynh D., Hernandez J. E., Mu Y., Hirst S., Villarreal L., Felgner P. L., Crotty S. 2005; Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice. J Virol 79:11724–11733 [View Article][PubMed]
    [Google Scholar]
  14. Domingo C., Gadea I., Pardeiro M., Castilla C., Fernández S., Fernández-Clua M. A., De la Cruz Troca J. J., Punzón C., Soriano F. et al. 2003; Immunological properties of a DNA plasmid encoding a chimeric protein of herpes simplex virus type 2 glycoprotein B and glycoprotein D. Vaccine 21:3565–3574 [View Article][PubMed]
    [Google Scholar]
  15. Freeman E. E., Weiss H. A., Glynn J. R., Cross P. L., Whitworth J. A., Hayes R. J. 2006; Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS 20:73–83 [View Article][PubMed]
    [Google Scholar]
  16. Gouwy M., Struyf S., Noppen S., Schutyser E., Springael J. Y., Parmentier M., Proost P., Van Damme J. 2008; Synergy between coproduced CC and CXC chemokines in monocyte chemotaxis through receptor-mediated events. Mol Pharmacol 74:485–495 [View Article][PubMed]
    [Google Scholar]
  17. Huang W., Hu K., Luo S., Zhang M., Li C., Jin W., Liu Y., Griffin G. E., Shattock R. J., Hu Q. 2012; Herpes simplex virus type 2 infection of human epithelial cells induces CXCL9 expression and CD4+ T cell migration via activation of p38-CCAAT/enhancer-binding protein-beta pathway. J Immunol 188:6247–6257 [View Article][PubMed]
    [Google Scholar]
  18. Iijima N., Iwasaki A. 2014; T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346:93–98 [View Article][PubMed]
    [Google Scholar]
  19. Karin N. 2010; The multiple faces of CXCL12 (SDF-1alpha) in the regulation of immunity during health and disease. J Leukoc Biol 88:463–473 [View Article][PubMed]
    [Google Scholar]
  20. Kumar A., Humphreys T. D., Kremer K. N., Bramati P. S., Bradfield L., Edgar C. E., Hedin K. E. 2006; CXCR4 physically associates with the T cell receptor to signal in T cells. Immunity 25:213–224 [View Article][PubMed]
    [Google Scholar]
  21. Lea S. M., Powell R. M., McKee T., Evans D. J., Brown D., Stuart D. I., van der Merwe P. A. 1998; Determination of the affinity and kinetic constants for the interaction between the human virus echovirus 11 and its cellular receptor, CD55. J Biol Chem 273:30443–30447 [View Article][PubMed]
    [Google Scholar]
  22. Li M., Ransohoff R. M. 2008; Multiple roles of chemokine CXCL12 in the central nervous system: a migration from immunology to neurobiology. Prog Neurobiol 84:116–131 [View Article][PubMed]
    [Google Scholar]
  23. Liljeqvist J. A., Trybala E., Hoebeke J., Svennerholm B., Bergström T. 2002; Monoclonal antibodies and human sera directed to the secreted glycoprotein G of herpes simplex virus type 2 recognize type-specific antigenic determinants. J Gen Virol 83:157–165 [View Article][PubMed]
    [Google Scholar]
  24. Lin C. L., Sewell A. K., Gao G. F., Whelan K. T., Phillips R. E., Austyn J. M. 2000; Macrophage-tropic HIV induces and exploits dendritic cell chemotaxis. J Exp Med 192:587–594 [View Article][PubMed]
    [Google Scholar]
  25. Martínez-Martín N., Viejo-Borbolla A., Martín R., Blanco S., Benovic J. L., Thelen M., Alcamí A. 2015; Herpes simplex virus enhances chemokine function through modulation of receptor trafficking and oligomerization. Nat Commun 6:6163 [View Article][PubMed]
    [Google Scholar]
  26. McGrory K., Flaitz C. M., Klein J. R. 2004; Chemokine changes during oral wound healing. Biochem Biophys Res Commun 324:317–320 [View Article][PubMed]
    [Google Scholar]
  27. McLean T. I., Bachenheimer S. L. 1999; Activation of cJUN N-terminal kinase by herpes simplex virus type 1 enhances viral replication. J Virol 73:8415–8426[PubMed]
    [Google Scholar]
  28. Meignier B., Longnecker R., Mavromara-Nazos P., Sears A. E., Roizman B. 1988; Virulence of and establishment of latency by genetically engineered deletion mutants of herpes simplex virus 1. Virology 162:251–254 [View Article][PubMed]
    [Google Scholar]
  29. Molesworth-Kenyon S. J., Milam A., Rockette A., Troupe A., Oakes J. E., Lausch R. N. 2014; Expression, inducers and cellular sources of the chemokine MIG (CXCL 9), during primary herpes simplex virus type-1 infection of the cornea. Curr Eye Res 40:800–808 [View Article][PubMed]
    [Google Scholar]
  30. Molon B., Gri G., Bettella M., Gómez-Moutón C., Lanzavecchia A., Martínez-A C., Mañes S., Viola A. 2005; T cell costimulation by chemokine receptors. Nat Immunol 6:465–471 [View Article][PubMed]
    [Google Scholar]
  31. Nakanishi Y., Lu B., Gerard C., Iwasaki A. 2009; CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature 462:510–513 [View Article][PubMed]
    [Google Scholar]
  32. Nakayama T., Shirane J., Hieshima K., Shibano M., Watanabe M., Jin Z., Nagakubo D., Saito T., Shimomura Y., Yoshie O. 2006; Novel antiviral activity of chemokines. Virology 350:484–492 [View Article][PubMed]
    [Google Scholar]
  33. Nixon B., Fakioglu E., Stefanidou M., Wang Y., Dutta M., Goldstein H., Herold B. C. 2014; Genital herpes simplex virus type 2 infection in humanized HIV-transgenic mice triggers HIV shedding and is associated with greater neurological disease. J Infect Dis 209:510–522 [View Article][PubMed]
    [Google Scholar]
  34. O'Gorman M. T., Jatoi N. A., Lane S. J., Mahon B. P. 2005; IL-1beta and TNF-alpha induce increased expression of CCL28 by airway epithelial cells via an NFkappaB-dependent pathway. Cell Immunol 238:87–96 [View Article][PubMed]
    [Google Scholar]
  35. Paz-Bailey G., Ramaswamy M., Hawkes S. J., Geretti A. M. 2007; Herpes simplex virus type 2: epidemiology and management options in developing countries. Sex Transm Infect 83:16–22 [View Article][PubMed]
    [Google Scholar]
  36. Proudfoot A. E., Uguccioni M. 2016; Modulation of chemokine responses: synergy and cooperativity. Front Immunol 7:183 [View Article][PubMed]
    [Google Scholar]
  37. Rangel-Moreno J., Moyron-Quiroz J., Kusser K., Hartson L., Nakano H., Randall T. D. 2005; Role of CXC chemokine ligand 13, CC chemokine ligand (CCL) 19, and CCL21 in the organization and function of nasal-associated lymphoid tissue. J Immunol 175:4904–4913 [View Article][PubMed]
    [Google Scholar]
  38. Richman D. D., Buckmaster A., Bell S., Hodgman C., Minson A. C. 1986; Identification of a new glycoprotein of herpes simplex virus type 1 and genetic mapping of the gene that codes for it. J Virol 57:647–655[PubMed]
    [Google Scholar]
  39. Rodger G., Boname J., Bell S., Minson T. 2001; Assembly and organization of glycoproteins B, C, D, and H in herpes simplex virus type 1 particles lacking individual glycoproteins: no evidence for the formation of a complex of these molecules. J Virol 75:710–716 [View Article][PubMed]
    [Google Scholar]
  40. Roizman B., Norrild B., Chan C., Pereira L. 1984; Identification and preliminary mapping with monoclonal antibodies of a herpes simplex virus 2 glycoprotein lacking a known type 1 counterpart. Virology 133:242–247 [View Article][PubMed]
    [Google Scholar]
  41. Shen F. H., Wang S. W., Yeh T. M., Tung Y. Y., Hsu S. M., Chen S. H. 2013; Absence of CXCL10 aggravates herpes stromal keratitis with reduced primary neutrophil influx in mice. J Virol 87:8502–8510 [View Article][PubMed]
    [Google Scholar]
  42. Thapa M., Carr D. J. 2008; Chemokines and chemokine receptors critical to host resistance following genital herpes simplex virus type 2 (HSV-2) infection. Open Immunol J 1:33–41 [View Article][PubMed]
    [Google Scholar]
  43. Thapa M., Carr D. J. 2009; CXCR3 deficiency increases susceptibility to genital herpes simplex virus type 2 infection: uncoupling of CD8+ T-cell effector function but not migration. J Virol 83:9486–9501 [View Article][PubMed]
    [Google Scholar]
  44. Thapa M., Welner R. S., Pelayo R., Carr D. J. 2008; CXCL9 and CXCL10 expression are critical for control of genital herpes simplex virus type 2 infection through mobilization of HSV-specific CTL and NK cells to the nervous system. J Immunol 180:1098–1106 [View Article][PubMed]
    [Google Scholar]
  45. Tran L. C., Kissner J. M., Westerman L. E., Sears A. E. 2000; A herpes simplex virus 1 recombinant lacking the glycoprotein G coding sequences is defective in entry through apical surfaces of polarized epithelial cells in culture and in vivo. Proc Natl Acad Sci U S A 97:1818–1822 [View Article][PubMed]
    [Google Scholar]
  46. Turner M. D., Nedjai B., Hurst T., Pennington D. J. 2014; Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 1843:2563–2582 [View Article][PubMed]
    [Google Scholar]
  47. Valderrama F., Cordeiro J. V., Schleich S., Frischknecht F., Way M. 2006; Vaccinia virus-induced cell motility requires F11L-mediated inhibition of RhoA signaling. Science 311:377–381 [View Article][PubMed]
    [Google Scholar]
  48. Van de Walle G. R., May M. L., Sukhumavasi W., von Einem J., Osterrieder N. 2007; Herpesvirus chemokine-binding glycoprotein G (gG) efficiently inhibits neutrophil chemotaxis in vitro and in vivo. J Immunol 179:4161–4169 [View Article][PubMed]
    [Google Scholar]
  49. Vega B., Muñoz L. M., Holgado B. L., Lucas P., Rodríguez-Frade J. M., Calle A., Rodríguez-Fernández J. L., Lechuga L. M., Rodríguez J. F. et al. 2011; Technical advance: surface plasmon resonance-based analysis of CXCL12 binding using immobilized lentiviral particles. J Leukoc Biol 90:399–408 [View Article][PubMed]
    [Google Scholar]
  50. Viejo-Borbolla A., Muñoz A., Tabarés E., Alcamí A. 2010; Glycoprotein G from pseudorabies virus binds to chemokines with high affinity and inhibits their function. J Gen Virol 91:23–31 [View Article][PubMed]
    [Google Scholar]
  51. Viejo-Borbolla A., Martinez-Martín N., Nel H. J., Rueda P., Martín R., Blanco S., Arenzana-Seisdedos F., Thelen M., Fallon P. G., Alcamí A. 2012; Enhancement of chemokine function as an immunomodulatory strategy employed by human herpesviruses. PLoS Pathog 8:e1002497 [View Article][PubMed]
    [Google Scholar]
  52. Weber P. C., Levine M., Glorioso J. C. 1987; Rapid identification of nonessential genes of herpes simplex virus type 1 by Tn5 mutagenesis. Science 236:576–579 [View Article][PubMed]
    [Google Scholar]
  53. Whitley R. J., Roizman B. 2001; Herpes simplex virus infections. Lancet 357:1513–1518 [View Article][PubMed]
    [Google Scholar]
  54. Wickham S., Lu B., Ash J., Carr D. J. 2005; Chemokine receptor deficiency is associated with increased chemokine expression in the peripheral and central nervous systems and increased resistance to herpetic encephalitis. J Neuroimmunol 162:51–59 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000616
Loading
/content/journal/jgv/10.1099/jgv.0.000616
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed