1887

Abstract

The cytoplasmic RNA sensors, retinoic acid-inducible gene I and melanoma differentiation-associated gene 5, play crucial roles in innate sensing of hepatitis C virus (HCV). However, the exact identity of the IFN inducer generated during HCV infection is poorly understood. To identify the IFN inducer, we extracted the RNAs from HCV-replicating cells and introduced these into IFN signalling-competent cells to examine IFN production. RNAs isolated from HCV-replicating cells triggered robust IFN-β and IFN-λ production in Huh7 cells in a viral replication-dependent manner, preferentially through the melanoma differentiation-associated gene 5 but not through the retinoic acid-inducible gene I-mediated pathway. The IFN-inducing capacity of HCV RNA survived after calf intestinal alkaline phosphatase and ssRNA-specific S1 nuclease treatment, but was completely eliminated by dsRNA-specific RNase III digestion, suggesting that viral replicative dsRNA is an IFN inducer. Furthermore, HCV viral RNA extracted from replicating cells was sensitive to 5′-monophosphate-dependent 5′→3′ exonuclease (TER) digestion, suggesting that the HCV genome lacks a 5′-triphosphate or -diphosphate. In semi-permeabilized cells, the HCV IFN inducer primarily resided in an enclosed membranous structure that protects the IFN inducer from RNase digestion. Taken together, we identified HCV replicative dsRNA as a viral IFN inducer enclosed within the viral replication factory.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000607
2016-11-10
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/11/2868.html?itemId=/content/journal/jgv/10.1099/jgv.0.000607&mimeType=html&fmt=ahah

References

  1. Abe Y., Fujii K., Nagata N., Takeuchi O., Akira S., Oshiumi H., Matsumoto M., Seya T., Koike S.. 2012; The toll-like receptor 3-mediated antiviral response is important for protection against poliovirus infection in poliovirus receptor transgenic mice. J Virol86:185–194 [CrossRef][PubMed]
    [Google Scholar]
  2. Ahmed M., McKenzie M. O., Puckett S., Hojnacki M., Poliquin L., Lyles D. S.. 2003; Ability of the matrix protein of vesicular stomatitis virus to suppress beta interferon gene expression is genetically correlated with the inhibition of host RNA and protein synthesis. J Virol77:4646–4657 [CrossRef][PubMed]
    [Google Scholar]
  3. Appleby T. C., Perry J. K., Murakami E., Barauskas O., Feng J., Cho A., Fox D., Wetmore D. R., McGrath M. E. et al. 2015; Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase. Science347:771–775 [CrossRef][PubMed]
    [Google Scholar]
  4. Arnaud N., Dabo S., Akazawa D., Fukasawa M., Shinkai-Ouchi F., Hugon J., Wakita T., Meurs E. F.. 2011; Hepatitis C virus reveals a novel early control in acute immune response. PLoS Pathog7:e1002289 [CrossRef][PubMed]
    [Google Scholar]
  5. Binder M., Kochs G., Bartenschlager R., Lohmann V.. 2007; Hepatitis C virus escape from the interferon regulatory factor 3 pathway by a passive and active evasion strategy. Hepatology46:1365–1374 [CrossRef][PubMed]
    [Google Scholar]
  6. Cao X., Ding Q., Lu J., Tao W., Huang B., Zhao Y., Niu J., Liu Y.-J., Zhong J.. 2015; MDA5 plays a critical role in interferon response during hepatitis C virus infection. J Hepatol62:771–778 [CrossRef][PubMed]
    [Google Scholar]
  7. Choo Q. L., Kuo G., Weiner A. J., Overby L. R., Bradley D. W., Houghton M.. 1989; Isolation of a cdna clone derived from a blood-borne non-a, non-B viral-hepatitis. Science244:359–362[CrossRef]
    [Google Scholar]
  8. den Boon J. A., Ahlquist P.. 2010; Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories. Annu Rev Microbiol64:241–256 [CrossRef][PubMed]
    [Google Scholar]
  9. Feng Q., Hato S. V., Langereis M. A., Zoll J., Virgen-Slane R., Peisley A., Hur S., Semler B. L., van Rij R. P., van Kuppeveld F. J.. 2012; MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell Rep2:1187–1196 [CrossRef][PubMed]
    [Google Scholar]
  10. Fiskum G., Craig S. W., Decker G. L., Lehninger A. L.. 1980; The cytoskeleton of digitonin-treated rat hepatocytes. Proc Natl Acad Sci U S A77:3430–3434 [CrossRef][PubMed]
    [Google Scholar]
  11. Goubau D., Schlee M., Deddouche S., Pruijssers A. J., Zillinger T., Goldeck M., Schuberth C., Van der Veen A. G., Fujimura T. et al. 2014; Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature514:372–375 [CrossRef][PubMed]
    [Google Scholar]
  12. Han J. Q., Barton D. J.. 2002; Activation and evasion of the antiviral 2′-5′ oligoadenylate synthetase/ribonuclease L pathway by hepatitis C virus mRNA. RNA8:512–525 [CrossRef][PubMed]
    [Google Scholar]
  13. Hiet M. S., Bauhofer O., Zayas M., Roth H., Tanaka Y., Schirmacher P., Willemsen J., Grünvogel O., Bender S. et al. 2015; Control of temporal activation of hepatitis C virus-induced interferon response by domain 2 of nonstructural protein 5A. J Hepatol63:829–837 [CrossRef][PubMed]
    [Google Scholar]
  14. Horner S. M.. 2014; Activation and evasion of antiviral innate immunity by hepatitis C virus. J Mol Biol426:1198–1209 [CrossRef][PubMed]
    [Google Scholar]
  15. Israelow B., Narbus C. M., Sourisseau M., Evans M. J.. 2014; HepG2 cells mount an effective antiviral interferon-lambda based innate immune response to hepatitis C virus infection. Hepatology60:1170–1179 [CrossRef][PubMed]
    [Google Scholar]
  16. Jensen S., Thomsen A. R.. 2012; Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol86:2900–2910 [CrossRef][PubMed]
    [Google Scholar]
  17. Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T. et al. 2006; Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature441:101–105 [CrossRef][PubMed]
    [Google Scholar]
  18. Kovalev N., Pogany J., Nagy P. D.. 2014; Template role of double-stranded RNA in tombusvirus replication. J Virol88:5638–5651 [CrossRef][PubMed]
    [Google Scholar]
  19. Lavanchy D.. 2011; Evolving epidemiology of hepatitis C virus. Clin Microbiol Infect17:107–115 [CrossRef][PubMed]
    [Google Scholar]
  20. Li X.-D., Sun L., Seth R. B., Pineda G., Chen Z. J.. 2005; Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci U S A102:17717–17722 [CrossRef][PubMed]
    [Google Scholar]
  21. Lin R., Mamane Y., Hiscott J.. 2000; Multiple regulatory domains control IRF-7 activity in response to virus infection. J Biol Chem275:34320–34327 [CrossRef][PubMed]
    [Google Scholar]
  22. Lindenbach B. D., Evans M. J., Syder A. J., Wölk B., Tellinghuisen T. L., Liu C. C., Maruyama T., Hynes R. O., Burton D. R. et al. 2005; Complete replication of hepatitis C virus in cell culture. Science309:623–626 [CrossRef][PubMed]
    [Google Scholar]
  23. Livak K. J., Schmittgen T. D.. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25:402–408 [CrossRef]
    [Google Scholar]
  24. Luo D., Ding S. C., Vela A., Kohlway A., Lindenbach B. D., Pyle A. M.. 2011; Structural insights into RNA recognition by RIG-I. Cell147:409–422 [CrossRef][PubMed]
    [Google Scholar]
  25. Malathi K., Saito T., Crochet N., Barton D. J., Gale M. Jr., Silverman R. H.. 2010; RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP. RNA16:2108–2119 [CrossRef][PubMed]
    [Google Scholar]
  26. Marukian S., Jones C. T., Andrus L., Evans M. J., Ritola K. D., Charles E. D., Rice C. M., Dustin L. B.. 2008; Cell culture-produced hepatitis C virus does not infect peripheral blood mononuclear cells. Hepatology48:1843–1850 [CrossRef][PubMed]
    [Google Scholar]
  27. Marukian S., Andrus L., Sheahan T. P., Jones C. T., Charles E. D., Ploss A., Rice C. M., Dustin L. B.. 2011; Hepatitis C virus induces interferon-λ and interferon-stimulated genes in primary liver cultures. Hepatology54:1913–1923 [CrossRef][PubMed]
    [Google Scholar]
  28. Miyanari Y., Hijikata M., Yamaji M., Hosaka M., Takahashi H., Shimotohno K.. 2003; Hepatitis C virus non-structural proteins in the probable membranous compartment function in viral genome replication. J Biol Chem278:50301–50308 [CrossRef][PubMed]
    [Google Scholar]
  29. Moradpour D., Penin F., Rice C. M.. 2007; Replication of hepatitis C virus. Nat Rev Microbiol5:453–463 [CrossRef][PubMed]
    [Google Scholar]
  30. Neufeldt C. J., Joyce M. A., Van Buuren N., Levin A., Kirkegaard K., Gale M., Tyrrell D. L., Wozniak R. W.. 2016; The hepatitis C virus-induced membranous web and associated nuclear transport machinery limit access of pattern recognition receptors to viral replication sites. PLoS Pathog12:e1005428 [CrossRef][PubMed]
    [Google Scholar]
  31. O'Neill L. A. J., Bowie A. G.. 2007; The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol7:353–364 [CrossRef]
    [Google Scholar]
  32. Ogino T., Banerjee A. K.. 2007; Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus. Mol Cell25:85–97 [CrossRef][PubMed]
    [Google Scholar]
  33. Paul D., Hoppe S., Saher G., Krijnse-Locker J., Bartenschlager R.. 2013; Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment. J Virol87:10612–10627 [CrossRef][PubMed]
    [Google Scholar]
  34. Pichlmair A., Schulz O., Tan C. P., Rehwinkel J., Kato H., Takeuchi O., Akira S., Way M., Schiavo G., Reis e Sousa C.. 2009; Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol83:10761–10769 [CrossRef]
    [Google Scholar]
  35. Quinkert D., Bartenschlager R., Lohmann V.. 2005; Quantitative analysis of the hepatitis C virus replication complex. J Virol79:13594–13605 [CrossRef][PubMed]
    [Google Scholar]
  36. Rehwinkel J., Tan C. P., Goubau D., Schulz O., Pichlmair A., Bier K., Robb N., Vreede F., Barclay W. et al. 2010; RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell140:397–408 [CrossRef][PubMed]
    [Google Scholar]
  37. Romero-Brey I., Merz A., Chiramel A., Lee J. Y., Chlanda P., Haselman U., Santarella-Mellwig R., Habermann A., Hoppe S. et al. 2012; Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog8:e1003056 [CrossRef][PubMed]
    [Google Scholar]
  38. Saito T., Owen D. M., Jiang F., Marcotrigiano J., Gale M.. 2008; Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature454:523–527 [CrossRef][PubMed]
    [Google Scholar]
  39. Schnell G., Loo Y. M., Marcotrigiano J., Gale M.. 2012; Uridine composition of the poly-U/UC tract of HCV RNA defines non-self recognition by RIG-I. PLoS Pathog8:e1002839 [CrossRef][PubMed]
    [Google Scholar]
  40. Su A. I., Pezacki J. P., Wodicka L., Brideau A. D., Supekova L., Thimme R., Wieland S., Bukh J., Purcell R. H. et al. 2002; Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci U S A99:15669–15674 [CrossRef][PubMed]
    [Google Scholar]
  41. Sullivan B. M., Teijaro J. R., de la Torre J. C., Oldstone M. B.. 2015; Early virus-host interactions dictate the course of a persistent infection. PLoS Pathog11:e1004588 [CrossRef][PubMed]
    [Google Scholar]
  42. Sumpter R., Loo Y. M., Foy E., Li K., Yoneyama M., Fujita T., Lemon S. M., Gale M.. 2005; Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol79:2689–2699 [CrossRef][PubMed]
    [Google Scholar]
  43. Takeuchi O., Akira S.. 2008; MDA5/RIG-I and virus recognition. Curr Opin Immunol20:17–22 [CrossRef][PubMed]
    [Google Scholar]
  44. Teterina N. L., Levenson E. A., Ehrenfeld E.. 2010; Viable polioviruses that encode 2A proteins with fluorescent protein tags. J Virol84:1477–1488 [CrossRef][PubMed]
    [Google Scholar]
  45. Uchida L., Espada-Murao L. A., Takamatsu Y., Okamoto K., Hayasaka D., Yu F., Nabeshima T., Buerano C. C., Morita K.. 2014; The dengue virus conceals double-stranded RNA in the intracellular membrane to escape from an interferon response. Sci Rep4:7395 [CrossRef][PubMed]
    [Google Scholar]
  46. von Kobbe C., van Deursen J. M., Rodrigues J. P., Sitterlin D., Bachi A., Wu X., Wilm M., Carmo-Fonseca M., Izaurralde E.. 2000; Vesicular stomatitis virus matrix protein inhibits host cell gene expression by targeting the nucleoporin Nup98. Mol Cell6:1243–1252 [CrossRef][PubMed]
    [Google Scholar]
  47. Whelan S. P., Wertz G. W.. 2002; Transcription and replication initiate at separate sites on the vesicular stomatitis virus genome. Proc Natl Acad Sci U S A99:9178–9183 [CrossRef][PubMed]
    [Google Scholar]
  48. Wieland S., Makowska Z., Campana B., Calabrese D., Dill M. T., Chung J., Chisari F. V., Heim M. H.. 2014; Simultaneous detection of hepatitis C virus and interferon stimulated gene expression in infected human liver. Hepatology59:2121–2130 [CrossRef][PubMed]
    [Google Scholar]
  49. Wölk B., Büchele B., Moradpour D., Rice C. M.. 2008; A dynamic view of hepatitis C virus replication complexes. J Virol82:10519–10531 [CrossRef][PubMed]
    [Google Scholar]
  50. Wu B., Peisley A., Richards C., Yao H., Zeng X., Lin C., Chu F., Walz T., Hur S.. 2013; Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell152:276–289 [CrossRef][PubMed]
    [Google Scholar]
  51. Yi Z., Pan T., Wu X., Song W., Wang S., Xu Y., Rice C. M., Macdonald M. R., Yuan Z.. 2011; Hepatitis C virus co-opts Ras-GTPase-activating protein-binding protein 1 for its genome replication. J Virol85:6996–7004 [CrossRef][PubMed]
    [Google Scholar]
  52. Yi Z., Yuan Z., Rice C. M., MacDonald M. R.. 2012; Flavivirus replication complex assembly revealed by DNAJC14 functional mapping. J Virol86:11815–11832 [CrossRef][PubMed]
    [Google Scholar]
  53. Zheng J., Yong H. Y., Panutdaporn N., Liu C., Tang K., Luo D.. 2015; High-resolution HDX-MS reveals distinct mechanisms of RNA recognition and activation by RIG-I and MDA5. Nucleic Acids Res43:1216–1230 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000607
Loading
/content/journal/jgv/10.1099/jgv.0.000607
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error