1887

Abstract

Marek’s disease virus, or Gallid herpesvirus 2 (GaHV-2), is an avian alphaherpesvirus that induces T-cell lymphoma in chickens. During transcriptomic studies of the R region of the genome, we characterized the 7.5 kbp gene of the ERL lncRNA (edited repeat-long, long non-coding RNA), which may act as a natural antisense transcript (NAT) of the major GaHV-2 oncogene and of two of the three miRNA clusters. During infections and , we detected hyperediting of the ERL lncRNA that appeared to be directly correlated with ADAR1 expression levels. The ERL lncRNA was expressed equally during the lytic and latent phases of infection and during viral reactivation, but its hyperediting increased only during the lytic infection of chicken embryo fibroblasts. We also showed that chicken expression was controlled by the JAK/STAT IFN-response pathway, through an inducible promoter containing IFN-stimulated response elements that were functional during stimulation with IFN-α or poly(I:C). Like the human and murine miR-155-5p, the chicken gga-miR-155-5p and the GaHV-2 analogue mdv1-miR-M4-5p deregulated this pathway by targeting and repressing expression of suppressor of cytokine signalling 1, leading to the upregulation of . Finally, we hypothesized that the natural antisense transcript role of the ERL lncRNA could be disrupted by its hyperediting, particularly during viral lytic replication, and that the observed deregulation of the innate immune system by mdv1-miR-M4-5p might contribute to the viral cycle.

Keyword(s): ADAR1 , editing , GaHV-2 , mdv1-miR-M4 , miR-155 and SOCS1
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000606
2016-11-10
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/11/2973.html?itemId=/content/journal/jgv/10.1099/jgv.0.000606&mimeType=html&fmt=ahah

References

  1. Burgess S. C., Young J. R., Baaten B. J., Hunt L., Ross L. N., Parcells M. S., Kumar P. M., Tregaskes C. A., Lee L. F., Davison T. F.. 2004; Marek's disease is a natural model for lymphomas overexpressing Hodgkin's disease antigen (CD30). Proc Natl Acad Sci U S A101:13879–13884 [CrossRef][PubMed]
    [Google Scholar]
  2. Burnside J., Bernberg E., Anderson A., Lu C., Meyers B. C., Green P. J., Jain N., Isaacs G., Morgan R. W.. 2006; Marek's disease virus encodes microRNAs that map to meq and the latency-associated transcript. J Virol80:8778–8786 [CrossRef][PubMed]
    [Google Scholar]
  3. Burnside J., Ouyang M., Anderson A., Bernberg E., Lu C., Meyers B. C., Green P. J., Markis M., Isaacs G. et al. 2008; Deep sequencing of chicken microRNAs. BMC Genomics9:185 [CrossRef][PubMed]
    [Google Scholar]
  4. Cantello J. L., Anderson A. S., Morgan R. W.. 1994; Identification of latency-associated transcripts that map antisense to the ICP4 homolog gene of Marek's disease virus. J Virol68:6280–6290[PubMed]
    [Google Scholar]
  5. Cao S., Moss W., O'Grady T., Concha M., Strong M. J., Wang X., Yu Y., Baddoo M., Zhang K. et al. 2015; New non-coding lytic transcripts derived from the Epstein barr virus latency origin of replication oriP are hyper-edited, bind the paraspeckle protein, NONO/p54nrb, and support lytic viral transcription. J Virol89:7120–7132 [CrossRef][PubMed]
    [Google Scholar]
  6. Chandriani S., Xu Y., Ganem D.. 2010; The lytic transcriptome of Kaposi's sarcoma-associated herpesvirus reveals extensive transcription of noncoding regions, including regions antisense to important genes. J Virol84:7934–7942 [CrossRef][PubMed]
    [Google Scholar]
  7. Coupeau D., Dambrine G., Rasschaert D.. 2012; Kinetic expression analysis of the cluster mdv1-mir-M9-M4, genes meq and vIL-8 differs between the lytic and latent phases of Marek's disease virus infection. J Gen Virol93:1519–1529 [CrossRef][PubMed]
    [Google Scholar]
  8. da Silva L. F., Jones C.. 2013; Small non-coding RNAs encoded within the herpes simplex virus type 1 latency associated transcript (LAT) cooperate with the retinoic acid inducible gene I (RIG-I) to induce beta-interferon promoter activity and promote cell survival. Virus Res175:101–109 [CrossRef][PubMed]
    [Google Scholar]
  9. Dinger M. E., Pang K. C., Mercer T. R., Mattick J. S.. 2008; Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLoS Comput Biol4:e1000176 [CrossRef][PubMed]
    [Google Scholar]
  10. Eggington J. M., Greene T., Bass B. L.. 2011; Predicting sites of ADAR editing in double-stranded RNA. Nat Commun2:319 [CrossRef][PubMed]
    [Google Scholar]
  11. Feng Z.-Q., Lian T., Huang Y., Zhu Q., Liu Y.-P.. 2013; Expression pattern of genes of RLR-mediated antiviral pathway in different-breed chicken response to Marek's disease virus infection. BioMed Res Int2013:419256 [CrossRef][PubMed]
    [Google Scholar]
  12. Fenner J. E., Starr R., Cornish A. L., Zhang J. G., Metcalf D., Schreiber R. D., Sheehan K., Hilton D. J., Alexander W. S., Hertzog P. J.. 2006; Suppressor of cytokine signaling 1 regulates the immune response to infection by a unique inhibition of type I interferon activity. Nat Immunol7:33–39 [CrossRef][PubMed]
    [Google Scholar]
  13. Finn R. D., Coggill P., Eberhardt R. Y., Eddy S. R., Mistry J., Mitchell A. L., Potter S. C., Punta M., Qureshi M. et al. 2016; The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res44:D279–285 [CrossRef][PubMed]
    [Google Scholar]
  14. Fragnet L., Blasco M. A., Klapper W., Rasschaert D.. 2003; The RNA subunit of telomerase is encoded by Marek's disease virus. J Virol77:5985–5996 [CrossRef][PubMed]
    [Google Scholar]
  15. Gandy S. Z., Linnstaedt S. D., Muralidhar S., Cashman K. A., Rosenthal L. J., Casey J. L.. 2007; RNA editing of the human herpesvirus 8 kaposin transcript eliminates its transforming activity and is induced during lytic replication. J Virol81:13544–13551 [CrossRef][PubMed]
    [Google Scholar]
  16. George C. X., Samuel C. E.. 1999; Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc Natl Acad Sci U S A96:4621–4626 [CrossRef][PubMed]
    [Google Scholar]
  17. Gitlin L., Barchet W., Gilfillan S., Cella M., Beutler B., Flavell R. A., Diamond M. S., Colonna M.. 2006; Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci U S A103:8459–8464 [CrossRef][PubMed]
    [Google Scholar]
  18. Heidari M., Zhang H. M., Sharif S.. 2008; Marek's disease virus induces Th-2 activity during cytolytic infection. Viral Immunol21:203–214 [CrossRef][PubMed]
    [Google Scholar]
  19. Heidari M., Sarson A. J., Huebner M., Sharif S., Kireev D., Zhou H.. 2010; Marek's disease virus-induced immunosuppression: array analysis of chicken immune response gene expression profiling. Viral Immunol23:309–319 [CrossRef][PubMed]
    [Google Scholar]
  20. Hu X., Zou H., Qin A., Qian K., Shao H., Ye J.. 2016; Activation of toll-like receptor 3 inhibits Marek's disease virus infection in chicken embryo fibroblast cells. Arch Virol161:521–528 [CrossRef][PubMed]
    [Google Scholar]
  21. Iizasa H., Wulff B. E., Alla N. R., Maragkakis M., Megraw M., Hatzigeorgiou A., Iwakiri D., Takada K., Wiedmer A. et al. 2010; Editing of Epstein-barr virus-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency. J Biol Chem285:33358–33370 [CrossRef][PubMed]
    [Google Scholar]
  22. Jie H., Lian L., Qu L. J., Zheng J. X., Hou Z. C., Xu G. Y., Song J. Z., Yang N.. 2013; Differential expression of toll-like receptor genes in lymphoid tissues between Marek's disease virus-infected and noninfected chickens. Poult Sci92:645–654 [CrossRef][PubMed]
    [Google Scholar]
  23. Jin Y., Zhang W., Li Q.. 2009; Origins and evolution of ADAR-mediated RNA editing. IUBMB Life61:572–578 [CrossRef][PubMed]
    [Google Scholar]
  24. Jones D., Lee L., Liu J. L., Kung H. J., Tillotson J. K.. 1992; Marek disease virus encodes a basic-leucine zipper gene resembling the fos/jun oncogenes that is highly expressed in lymphoblastoid tumors. Proc Natl Acad Sci U S A89:4042–4046 [CrossRef][PubMed]
    [Google Scholar]
  25. Juranic Lisnic V., Babic Cac M., Lisnic B., Trsan T., Mefferd A., Das Mukhopadhyay C., Cook C. H., Jonjic S., Trgovcich J., Lisnic J. V.. 2013; Dual analysis of the murine cytomegalovirus and host cell transcriptomes reveal new aspects of the virus-host cell interface. PLoS Pathog9:e1003611 [CrossRef][PubMed]
    [Google Scholar]
  26. Kawahara Y., Nishikura K.. 2006; Extensive adenosine-to-inosine editing detected in Alu repeats of antisense RNAs reveals scarcity of sense-antisense duplex formation. FEBS Lett580:2301–2305 [CrossRef][PubMed]
    [Google Scholar]
  27. Kawai T., Akira S.. 2006; Innate immune recognition of viral infection. Nat Immunol7:131–137 [CrossRef][PubMed]
    [Google Scholar]
  28. Lavorgna G., Dahary D., Lehner B., Sorek R., Sanderson C. M., Casari G.. 2004; In search of antisense. Trends Biochem Sci29:88–94 [CrossRef][PubMed]
    [Google Scholar]
  29. Li Z., Okonski K. M., Samuel C. E.. 2012; Adenosine deaminase acting on RNA 1 (ADAR1) suppresses the induction of interferon by measles virus. J Virol86:3787–3794 [CrossRef][PubMed]
    [Google Scholar]
  30. Linnstaedt S. D., Gottwein E., Skalsky R. L., Luftig M. A., Cullen B. R.. 2010; Virally induced cellular microRNA miR-155 plays a key role in B-cell immortalization by Epstein-barr virus. J Virol84:11670–11678 [CrossRef][PubMed]
    [Google Scholar]
  31. Mannion N. M., Greenwood S. M., Young R., Cox S., Brindle J., Read D., Nellåker C., Vesely C., Ponting C. P. et al. 2014; The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep9:1482–1494 [CrossRef][PubMed]
    [Google Scholar]
  32. Melchjorsen J., Rintahaka J., Søby S., Horan K. A., Poltajainen A., Østergaard L., Paludan S. R., Matikainen S.. 2010; Early innate recognition of herpes simplex virus in human primary macrophages is mediated via the MDA5/MAVS-dependent and MDA5/MAVS/RNA polymerase III-independent pathways. J Virol84:11350–11358 [CrossRef][PubMed]
    [Google Scholar]
  33. Morgan R. W., Sofer L., Anderson A. S., Bernberg E. L., Cui J., Burnside J.. 2001; Induction of host gene expression following infection of chicken embryo fibroblasts with oncogenic Marek's disease virus. J Virol75:533–539 [CrossRef][PubMed]
    [Google Scholar]
  34. Morgan R., Anderson A., Bernberg E., Kamboj S., Huang E., Lagasse G., Isaacs G., Parcells M., Meyers B. C. et al. 2008; Sequence conservation and differential expression of Marek's disease virus microRNAs. J Virol82:12213–12220 [CrossRef][PubMed]
    [Google Scholar]
  35. Muylkens B., Coupeau D., Dambrine G., Trapp S., Rasschaert D.. 2010; Marek's disease virus microRNA designated Mdv1-pre-miR-M4 targets both cellular and viral genes. Arch Virol155:1823–1837 [CrossRef][PubMed]
    [Google Scholar]
  36. Neeman Y., Dahary D., Levanon E. Y., Sorek R., Eisenberg E.. 2005; Is there any sense in antisense editing?. Trends Genet21:544–547 [CrossRef][PubMed]
    [Google Scholar]
  37. Neilsen P. M., Noll J. E., Mattiske S., Bracken C. P., Gregory P. A., Schulz R. B., Lim S. P., Kumar R., Suetani R. J. et al. 2013; Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene32:2992–3000 [CrossRef][PubMed]
    [Google Scholar]
  38. Nishikura K.. 2010; Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem79:321–349 [CrossRef][PubMed]
    [Google Scholar]
  39. Osterrieder N., Kamil J. P., Schumacher D., Tischer B. K., Trapp S.. 2006; Marek's disease virus: from miasma to model. Nat Rev Microbiol4:283–294 [CrossRef][PubMed]
    [Google Scholar]
  40. Parvizi P., Mallick A. I., Haq K., Haghighi H. R., Orouji S., Thanthrige-Don N., St Paul M., Brisbin J. T., Read L. R. et al. 2012; A toll-like receptor 3 ligand enhances protective effects of vaccination against Marek's disease virus and hinders tumor development in chickens. Viral Immunol25:1–8 [CrossRef][PubMed]
    [Google Scholar]
  41. Quéré P., Rivas C., Ester K., Novak R., Ragland W. L.. 2005; Abundance of IFN-alpha and IFN-gamma mRNA in blood of resistant and susceptible chickens infected with Marek's disease virus (MDV) or vaccinated with turkey herpesvirus; and MDV inhibition of subsequent induction of IFN gene transcription. Arch Virol150:507–519 [CrossRef][PubMed]
    [Google Scholar]
  42. Rossetto C. C., Pari G. S.. 2014; PAN's Labyrinth: molecular biology of Kaposi's sarcoma-associated herpesvirus (KSHV) PAN RNA, a multifunctional long noncoding RNA. Viruses6:4212–4226 [CrossRef][PubMed]
    [Google Scholar]
  43. Samuel C. E.. 2012; ADARs, viruses and innate immunity. In Adenosine Deaminases Act RNA ADARs -Ed , pp.163–195 Berlin Heidelberg: Springer;[CrossRef]
    [Google Scholar]
  44. Scadden A. D.. 2005; The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nat Struct Mol Biol12:489–496 [CrossRef][PubMed]
    [Google Scholar]
  45. Shefer K., Sperling J., Sperling R.. 2014; The Supraspliceosome - a multi-task machine for regulated pre-mRNA processing in the cell nucleus. Comput Struct Biotechnol J11:113–122 [CrossRef][PubMed]
    [Google Scholar]
  46. Skalsky R. L., Samols M. A., Plaisance K. B., Boss I. W., Riva A., Lopez M. C., Baker H. V., Renne R.. 2007; Kaposi's sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol81:12836–12845 [CrossRef][PubMed]
    [Google Scholar]
  47. Stik G., Dambrine G., Pfeffer S., Rasschaert D.. 2013; The oncogenic microRNA OncomiR-21 overexpressed during Marek's disease lymphomagenesis is transactivated by the viral oncoprotein Meq. J Virol87:80–93 [CrossRef][PubMed]
    [Google Scholar]
  48. Strassheim S., Stik G., Rasschaert D., Laurent S.. 2012; mdv1-miR-M7-5p, located in the newly identified first intron of the latency-associated transcript of Marek's disease virus, targets the immediate-early genes ICP4 and ICP27. J Gen Virol93:1731–1742 [CrossRef][PubMed]
    [Google Scholar]
  49. Su C., Hou Z., Zhang C., Tian Z., Zhang J.. 2011; Ectopic expression of microRNA-155 enhances innate antiviral immunity against HBV infection in human hepatoma cells. Virol J8:354 [CrossRef][PubMed]
    [Google Scholar]
  50. Suspène R., Petit V., Puyraimond-Zemmour D., Aynaud M. M., Henry M., Guétard D., Rusniok C., Wain-Hobson S., Vartanian J. P.. 2011; Double-stranded RNA adenosine deaminase ADAR-1-induced hypermutated genomes among inactivated seasonal influenza and live attenuated measles virus vaccines. J Virol85:2458–2462 [CrossRef][PubMed]
    [Google Scholar]
  51. Thomas D. L., Lock M., Zabolotny J. M., Mohan B. R., Fraser N. W.. 2002; The 2-kilobase intron of the herpes simplex virus type 1 latency-associated transcript has a half-life of approximately 24 hours in SY5Y and COS-1 cells. J Virol76:532–540 [CrossRef][PubMed]
    [Google Scholar]
  52. Vitali P., Scadden A. D.. 2010; Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis. Nat Struct Mol Biol17:1043–1050 [CrossRef][PubMed]
    [Google Scholar]
  53. Volpini L. M., Calnek B. W., Sneath B., Sekellick M. J., Marcus P. I.. 1996; Interferon modulation of Marek's disease virus genome expression in chicken cell lines. Avian Dis40:78–87 [CrossRef][PubMed]
    [Google Scholar]
  54. Wahlstedt H., Ohman M.. 2011; Site-selective versus promiscuous A-to-I editing. Wiley Interdiscip Rev RNA2:761–771 [CrossRef][PubMed]
    [Google Scholar]
  55. Wang P., Hou J., Lin L., Wang C., Liu X., Li D., Ma F., Wang Z., Cao X.. 2010; nducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol185:6226–6233[CrossRef]
    [Google Scholar]
  56. Wong S. K., Lazinski D. W.. 2002; Replicating hepatitis delta virus RNA is edited in the nucleus by the small form of ADAR1. Proc Natl Acad Sci U S A99:15118–15123 [CrossRef][PubMed]
    [Google Scholar]
  57. Wu Y., Maruo S., Yajima M., Kanda T., Takada K.. 2007; Epstein-barr virus (EBV)-encoded RNA 2 (EBER2) but not EBER1 plays a critical role in EBV-induced B-cell growth transformation. J Virol81:11236–11245 [CrossRef][PubMed]
    [Google Scholar]
  58. Xing Z., Schat K. A.. 2000; Inhibitory effects of nitric oxide and gamma interferon on in vitro and in vivo replication of Marek's disease virus. J Virol74:3605–3612 [CrossRef][PubMed]
    [Google Scholar]
  59. Yang C., Su J., Li Q., Zhang R., Rao Y.. 2012; Identification and expression profiles of ADAR1 gene, responsible for RNA editing, in responses to dsRNA and GCRV challenge in grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol33:1042–1049 [CrossRef][PubMed]
    [Google Scholar]
  60. Yao Y., Zhao Y., Smith L. P., Lawrie C. H., Saunders N. J., Watson M., Nair V.. 2009; Differential expression of microRNAs in Marek's disease virus-transformed T-lymphoma cell lines. J Gen Virol90:1551–1559 [CrossRef][PubMed]
    [Google Scholar]
  61. Zahn R. C., Schelp I., Utermöhlen O., von Laer D.. 2007; A-to-G hypermutation in the genome of lymphocytic choriomeningitis virus. J Virol81:457–464 [CrossRef][PubMed]
    [Google Scholar]
  62. Zhang Z., Carmichael G. G.. 2001; The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell106:465–475[PubMed][CrossRef]
    [Google Scholar]
  63. Zhao P., Li X.-J., Teng M., Dang L., Yu Z.-H., Chi J.-Q., Su J.-W., Zhang G.-P., Luo J.. 2015; In vivo expression patterns of microRNAs of Gallid herpesvirus 2 (GaHV-2) during the virus life cycle and development of Marek's disease lymphomas. Virus Genes50:245–252 [CrossRef][PubMed]
    [Google Scholar]
  64. Zuker M.. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res31:3406–3415 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000606
Loading
/content/journal/jgv/10.1099/jgv.0.000606
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error