1887

Abstract

The parapoxvirus Orf virus (ORFV), has long been recognized for its immunomodulatory properties in permissive and non-permissive animal species. Here, a new recombinant ORFV expressing the full-length spike (S) protein of (PEDV) was generated and its immunogenicity and protective efficacy were evaluated in pigs. The PEDV S was inserted into the gene locus, an immunomodulatory gene that inhibits activation of the NF-κB signalling pathway and contributes to ORFV virulence in the natural host. The recombinant ORFV-PEDV-S virus efficiently and stably expressed the PEDV S protein in cell culture . Three intramuscular (IM) immunizations with the recombinant ORFV-PEDV-S in 3-week-old pigs elicited robust serum IgG, IgA and neutralizing antibody responses against PEDV. Additionally, IM immunization with the recombinant ORFV-PEDV-S virus protected pigs from clinical signs of porcine epidemic diarrhoea (PED) and reduced virus shedding in faeces upon challenge infection. These results demonstrate the suitability of gene locus as an insertion site for heterologous gene expression and delivery by ORFV-based viral vectors. Additionally, the results provide evidence of the potential of ORFV as a vaccine delivery vector for enteric viral diseases of swine. This study may have important implications for future development of ORFV-vectored vaccines for swine.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000586
2016-10-13
2020-04-01
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/10/2719.html?itemId=/content/journal/jgv/10.1099/jgv.0.000586&mimeType=html&fmt=ahah

References

  1. Amann R., Rohde J., Wulle U., Conlee D., Raue R., Martinon O., Rziha H. J.. 2013; A new rabies vaccine based on a recombinant ORF virus (parapoxvirus) expressing the rabies virus glycoprotein. J Virol87:1618–1630 [CrossRef][PubMed]
    [Google Scholar]
  2. Blum J. S., Wearsch P. A., Cresswell P.. 2013; Pathways of antigen processing. Annu Rev Immunol31:443–473 [CrossRef][PubMed]
    [Google Scholar]
  3. Chakrabarti S., Sisler J. R., Moss B.. 1997; Compact, synthetic, vaccinia virus early/late promoter for protein expression. Biotechniques23:1094–1097[PubMed]
    [Google Scholar]
  4. Chang S. H., Bae J. L., Kang T. J., Kim J., Chung G. H., Lim C. W., Laude H., Yang M. S., Jang Y. S.. 2002; Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Mol Cells14:295–299[PubMed]
    [Google Scholar]
  5. Chattha K. S., Roth J. A., Saif L. J.. 2014; Strategies for design and application of enteric viral vaccines. Annu Rev Anim Biosci3:375–395 [CrossRef][PubMed]
    [Google Scholar]
  6. Cruz D. J., Kim C. J., Shin H. J.. 2006; Phage-displayed peptides having antigenic similarities with porcine epidemic diarrhea virus (PEDV) neutralizing epitopes. Virology354:28–34 [CrossRef][PubMed]
    [Google Scholar]
  7. Cruz D. J., Kim C. J., Shin H. J.. 2008; The GPRLQPY motif located at the carboxy-terminal of the spike protein induces antibodies that neutralize Porcine epidemic diarrhea virus. Virus Res132:192–196 [CrossRef][PubMed]
    [Google Scholar]
  8. de Arriba M. L., Carvajal A., Pozo J., Rubio P.. 2002a; Isotype-specific antibody-secreting cells in systemic and mucosal associated lymphoid tissues and antibody responses in serum of conventional pigs inoculated with PEDV. Vet Immunol Immunopathol84:1–16 [CrossRef]
    [Google Scholar]
  9. de Arriba M. L., Carvajal A., Pozo J., Rubio P.. 2002b; Mucosal and systemic isotype-specific antibody responses and protection in conventional pigs exposed to virulent or attenuated porcine epidemic diarrhoea virus. Vet Immunol Immunopathol85:85–97 [CrossRef]
    [Google Scholar]
  10. Deane D., McInnes C. J., Percival A., Wood A., Thomson J., Lear A., Gilray J., Fleming S., Mercer A., Haig D.. 2000; Orf virus encodes a novel secreted protein inhibitor of granulocyte-macrophage colony-stimulating factor and interleukin-2. J Virol74:1313–1320 [CrossRef][PubMed]
    [Google Scholar]
  11. Debouck P., Pensaert M., Coussement W.. 1981; The pathogenesis of an enteric infection in pigs, experimentally induced by the coronavirus-like agent, CV 777. Vet Microbiol6:157–165 [CrossRef]
    [Google Scholar]
  12. Delhon G., Tulman E. R., Afonso C. L., Lu Z., de la Concha-Bermejillo A., Lehmkuhl H. D., Piccone M. E., Kutish G. F., Rock D. L.. 2004; Genomes of the parapoxviruses ORF virus and bovine papular stomatitis virus. J Virol78:168–177 [CrossRef][PubMed]
    [Google Scholar]
  13. Diel D. G., Delhon G., Luo S., Flores E. F., Rock D. L.. 2010; A novel inhibitor of the NF-{kappa}B signaling pathway encoded by the parapoxvirus orf virus. J Virol84:3962–3973 [CrossRef][PubMed]
    [Google Scholar]
  14. Diel D. G., Luo S., Delhon G., Peng Y., Flores E. F., Rock D. L.. 2011a; A nuclear inhibitor of NF-kappaB encoded by a poxvirus. J Virol85:264–275 [CrossRef]
    [Google Scholar]
  15. Diel D. G., Luo S., Delhon G., Peng Y., Flores E. F., Rock D. L.. 2011b; Orf virus ORFV121 encodes a novel inhibitor of NF-kappaB that contributes to virus virulence. J Virol85:2037–2049 [CrossRef]
    [Google Scholar]
  16. Dory D., Fischer T., Béven V., Cariolet R., Rziha H. J., Jestin A.. 2006; Prime-boost immunization using DNA vaccine and recombinant Orf virus protects pigs against Pseudorabies virus (Herpes suid 1). Vaccine24:6256–6263 [CrossRef][PubMed]
    [Google Scholar]
  17. Fischer T., Planz O., Stitz L., Rziha H. J.. 2003; Novel recombinant parapoxvirus vectors induce protective humoral and cellular immunity against lethal herpesvirus challenge infection in mice. J Virol77:9312–9323 [CrossRef][PubMed]
    [Google Scholar]
  18. Fleming S. B., McCaughan C. A., Andrews A. E., Nash A. D., Mercer A. A.. 1997; A homolog of interleukin-10 is encoded by the poxvirus orf virus. J Virol71:4857–4861[PubMed]
    [Google Scholar]
  19. Fleming S. B., Anderson I. E., Thomson J., Deane D. L., McInnes C. J., McCaughan C. A., Mercer A. A., Haig D. M.. 2007; Infection with recombinant orf viruses demonstrates that the viral interleukin-10 is a virulence factor. J Gen Virol88:1922–1927 [CrossRef][PubMed]
    [Google Scholar]
  20. Goede D., Murtaugh M. P., Nerem J., Yeske P., Rossow K., Morrison R.. 2015; Previous infection of sows with a "mild" strain of porcine epidemic diarrhea virus confers protection against infection with a "severe" strain. Vet Microbiol176:161–164 [CrossRef][PubMed]
    [Google Scholar]
  21. Henkel M., Planz O., Fischer T., Stitz L., Rziha H. J.. 2005; Prevention of virus persistence and protection against immunopathology after borna disease virus infection of the brain by a novel Orf virus recombinant. J Virol79:314–325 [CrossRef][PubMed]
    [Google Scholar]
  22. Hierholzer J. C., Killington R. A.. 1996; Virus isolation and quantitation. In Virology Methods Manual pp.25–46 San Diego, CA: Academic Press Inc;[CrossRef]
    [Google Scholar]
  23. Jenkinson D. M., Mcewan P. E., Moss V. A., Elder H. Y., Reid H. W.. 1990; Location and spread of Orf virus antigen in infected Ovine skin. Vet Dermatol1:189–195 [CrossRef]
    [Google Scholar]
  24. Langel S. N., Paim F. C., Lager K. M., Vlasova A. N., Saif L. J.. 2016; Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Historical and current concepts. Virus Res (in press) Doi [CrossRef][PubMed]
    [Google Scholar]
  25. Lawson L. B., Clements J. D., Freytag L. C.. 2012; Mucosal immune responses induced by transcutaneous vaccines. Curr Top Microbiol Immunol354:19–37 [CrossRef][PubMed]
    [Google Scholar]
  26. Lee C.. 2015; Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus. Virol J12:193 [CrossRef][PubMed]
    [Google Scholar]
  27. Liu D. Q., Ge J. W., Qiao X. Y., Jiang Y. P., Liu S. M., Li Y. J.. 2012; High-level mucosal and systemic immune responses induced by oral administration with Lactobacillus-expressed porcine epidemic diarrhea virus (PEDV) S1 region combined with Lactobacillus-expressed N protein. Appl Microbiol Biotechnol93:2437–2446 [CrossRef][PubMed]
    [Google Scholar]
  28. Madson D. M., Magstadt D. R., Arruda P. H. E., Hoang H., Sun D., Bower L. P., Bhandari M., Burrough E. R., Gauger P. C. et al. 2014; Pathogenesis of porcine epidemic diarrhea virus isolate (US/Iowa/18984/2013) in 3-week-old weaned pigs. Vet Microbiol174:60–68 [CrossRef][PubMed]
    [Google Scholar]
  29. Makadiya N., Brownlie R., van den Hurk J., Berube N., Allan B., Gerdts V., Zakhartchouk A.. 2016; S1 domain of the porcine epidemic diarrhea virus spike protein as a vaccine antigen. Virol J13:57 [CrossRef][PubMed]
    [Google Scholar]
  30. Marsland B. J., Tisdall D. J., Heath D. D., Mercer A. A.. 2003; Construction of a recombinant orf virus that expresses an Echinococcus granulosus vaccine antigen from a novel genomic insertion site. Arch Virol148:555–562 [CrossRef][PubMed]
    [Google Scholar]
  31. McInnes C. J., Wood A. R., Mercer A. A.. 1998; Orf virus encodes a homolog of the vaccinia virus interferon-resistance gene E3L. Virus Genes17:107–115[PubMed][CrossRef]
    [Google Scholar]
  32. Mercer A. A., Schmidt A., Weber O.. 2007; Poxviruses Edited by Mercer A. A., Schmidt A., Weber O.. Berlin: Birkhäuser Verlag;[CrossRef]
    [Google Scholar]
  33. Meyer M., Clauss M., Lepple-Wienhues A., Waltenberger J., Augustin H. G., Ziche M., Lanz C., Büttner M., Rziha H. J., Dehio C.. 1999; A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J18:363–374 [CrossRef][PubMed]
    [Google Scholar]
  34. Ning Z., Peng Y., Hao W., Duan C., Rock D. L., Luo S.. 2011; Generation of recombinant Orf virus using an enhanced green fluorescent protein reporter gene as a selectable marker. BMC Vet Res7:80 [CrossRef][PubMed]
    [Google Scholar]
  35. Oh J., Lee K. W., Choi H. W., Lee C.. 2014; Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein. Arch Virol159:2977–2987 [CrossRef][PubMed]
    [Google Scholar]
  36. Okda F., Liu X., Singrey A., Clement T., Nelson J., Christopher-Hennings J., Nelson E. A., Lawson S.. 2015; Development of an indirect ELISA, blocking ELISA, fluorescent microsphere immunoassay and fluorescent focus neutralization assay for serologic evaluation of exposure to North American strains of Porcine epidemic Diarrhea virus. BMC Vet Res11:180 [CrossRef][PubMed]
    [Google Scholar]
  37. Paudel S., Park J. E., Jang H., Shin H. J.. 2014; Comparison of serum neutralization and enzyme-linked immunosorbent assay on sera from porcine epidemic diarrhea virus vaccinated pigs. Vet Q34:218–223 [CrossRef][PubMed]
    [Google Scholar]
  38. Pensaert M. B., de Bouck P.. 1978; A new coronavirus-like particle associated with diarrhea in swine. Arch Virol58:243–247 [CrossRef][PubMed]
    [Google Scholar]
  39. Poonsuk K., Giménez-Lirola L. G., Zhang J., Arruda P., Chen Q., Correa da Silva Carrion L., Magtoto R., Pineyro P., Sarmento L. et al. 2016; Does circulating Antibody play a role in the protection of piglets against porcine epidemic Diarrhea virus?. PLoS One11:e0153041 [CrossRef][PubMed]
    [Google Scholar]
  40. Rohde J., Schirrmeier H., Granzow H., Rziha H. J.. 2011; A new recombinant Orf virus (ORFV, Parapoxvirus) protects rabbits against lethal infection with rabbit hemorrhagic disease virus (RHDV). Vaccine29:9256–9264 [CrossRef][PubMed]
    [Google Scholar]
  41. Rohde J., Amann R., Rziha H. J.. 2013; New Orf virus (Parapoxvirus) recombinant expressing H5 hemagglutinin protects mice against H5N1 and H1N1 influenza A virus. PLoS One8:e83802 [CrossRef][PubMed]
    [Google Scholar]
  42. Saif L. J.. 2015; Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): Revising transmissible gastroenteritis virus (TGEV) vaccine concepts. In AASV Annu Meet Orlando pp.403–406
    [Google Scholar]
  43. Seet B. T., McCaughan C. A., Handel T. M., Mercer A., Brunetti C., McFadden G., Fleming S. B.. 2003; Analysis of an orf virus chemokine-binding protein: shifting ligand specificities among a family of poxvirus viroceptors. Proc Natl Acad Sci U S A100:15137–15142 [CrossRef][PubMed]
    [Google Scholar]
  44. Song D., Park B.. 2012; Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes44:167–175 [CrossRef][PubMed]
    [Google Scholar]
  45. Song D. S., Oh J. S., Kang B. K., Yang J. S., Moon H. J., Yoo H. S., Jang Y. S., Park B. K.. 2007; Oral efficacy of Vero cell attenuated porcine epidemic diarrhea virus DR13 strain. Res Vet Sci82:134–140 [CrossRef][PubMed]
    [Google Scholar]
  46. Sun D., Feng L., Shi H., Chen J., Cui X., Chen H., Liu S., Tong Y., Wang Y., Tong G.. 2008; Identification of two novel B cell epitopes on porcine epidemic diarrhea virus spike protein. Vet Microbiol131:73–81 [CrossRef][PubMed]
    [Google Scholar]
  47. Sun D. B., Feng L., Shi H. Y., Chen J. F., Liu S. W., Chen H. Y., Wang Y. F.. 2007; Spike protein region (aa 636789) of porcine epidemic diarrhea virus is essential for induction of neutralizing antibodies. Acta Virol51:149–156[PubMed]
    [Google Scholar]
  48. Suo S., Ren Y., Li G., Zarlenga D., Bu R. E., Su D., Li X., Li P., Meng F. et al. 2012; Immune responses induced by DNA vaccines bearing Spike gene of PEDV combined with porcine IL-18. Virus Res167:259–266 [CrossRef][PubMed]
    [Google Scholar]
  49. van Rooij E. M., Rijsewijk F. A., Moonen-Leusen H. W., Bianchi A. T., Rziha H. J.. 2010; Comparison of different prime-boost regimes with DNA and recombinant Orf virus based vaccines expressing glycoprotein D of pseudorabies virus in pigs. Vaccine28:1808–1813 [CrossRef][PubMed]
    [Google Scholar]
  50. Voigt H., Merant C., Wienhold D., Braun A., Hutet E., Le Potier M. F., Saalmüller A., Pfaff E., Büttner M.. 2007; Efficient priming against classical swine fever with a safe glycoprotein E2 expressing Orf virus recombinant (ORFV VrV-E2). Vaccine25:5915–5926 [CrossRef][PubMed]
    [Google Scholar]
  51. Wang Z., Martinez J., Zhou W., La Rosa C., Srivastava T., Dasgupta A., Rawal R., Li Z., Britt W. J., Diamond D.. 2010; Modified H5 promoter improves stability of insert genes while maintaining immunogenicity during extended passage of genetically engineered MVA vaccines. Vaccine28:1547–1557 [CrossRef][PubMed]
    [Google Scholar]
  52. Weber O., Knolle P., Volk H.-D.. 2007; Immunomodulation by inactivated Orf virus (ORFV) - therapeutic potential. In Poxviruses, 1st edn. pp297–310 Edited by Mercer A. A., Schmidt A., Weber O.. Boston/Basel/ Berlin: Birkhaeuser Verlag;[CrossRef]
    [Google Scholar]
  53. Weber O., Mercer A. A., Friebe A., Knolle P., Volk H. D.. 2013; Therapeutic immunomodulation using a virus – the potential of inactivated orf virus. Eur J Clin Microbiol Infect Dis32:451–460 [CrossRef][PubMed]
    [Google Scholar]
  54. Wise L. M., Veikkola T., Mercer A. A., Savory L. J., Fleming S. B., Caesar C., Vitali A., Makinen T., Alitalo K., Stacker S. A.. 1999; Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. Proc Natl Acad Sci U S A96:3071–3076 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000586
Loading
/content/journal/jgv/10.1099/jgv.0.000586
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error