1887

Abstract

Enzootic bovine leucosis is caused by bovine leukemia virus (BLV) infection, which is highly prevalent in several regions of the world and significantly impacts the livestock industry. In BLV infection, the proviral load in the blood reflects disease progression. Although the BLV genome is highly conserved among retroviruses, genetic variation has been reported. However, the relationship between proviral load and genetic variation is poorly understood. In this study, we investigated the changes in proviral load in BLV-infected cattle in Japan and then identified and analysed a BLV strain pvAF967 that had a static proviral load. First, examining the proviral load in the aleukaemic cattle in 2014 and 2015, cow AF967 showed a static proviral load, while the other cows showed significant increases in proviral load. Sequencing the provirus in cow AF967 showed a deletion of 12 nt located in the gene. An assay system using BLV molecular clone was set up to evaluate viral replication and production. In this assay, the deletion mutation in the gene resulted in a significant decrease in viral replication and production. In addition, we showed that the deletion mutation did not affect the viral transcriptional activity of Tax protein, which is also important for virus replication. The emergence of strain pvAF967 that showed a static proviral load, combined with other retrovirus evolutionary traits, suggests that some BLV strains may have evolved to be symbiotic with cattle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000583
2016-10-13
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/10/2753.html?itemId=/content/journal/jgv/10.1099/jgv.0.000583&mimeType=html&fmt=ahah

References

  1. Aida Y. 2001; Influence of host genetic differences on leukemogenesis induced by bovine leukemia virus. AIDS Res Hum Retroviruses 17:S12
    [Google Scholar]
  2. Aida Y., Murakami H., Takahashi M., Takeshima S. N. 2013; Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front Microbiol 4:328 [View Article][PubMed]
    [Google Scholar]
  3. Andresen V., Pise-Masison C. A., Sinha-Datta U., Bellon M., Valeri V., Washington Parks R., Cecchinato V., Fukumoto R., Nicot C., Franchini G. 2011; Suppression of HTLV-1 replication by tax-mediated rerouting of the p13 viral protein to nuclear speckles. Blood 118:1549–1559 [View Article][PubMed]
    [Google Scholar]
  4. Ariën K. K., Vanham G., Arts E. J. 2007; Is HIV-1 evolving to a less virulent form in humans?. Nat Rev Microbiol 5:141–151 [View Article][PubMed]
    [Google Scholar]
  5. Bai X. T., Nicot C. 2012; Overview on HTLV-1 p12, p8, p30, p13: accomplices in persistent infection and viral pathogenesis. Front Microbiol 3:400 [View Article][PubMed]
    [Google Scholar]
  6. D'Agostino D. M., Silic-Benussi M., Hiraragi H., Lairmore M. D., Ciminale V. 2005; The human T-cell leukemia virus type 1 p13II protein: effects on mitochondrial function and cell growth. Cell Death Differ 12:905–915 [View Article][PubMed]
    [Google Scholar]
  7. de Brogniez A., Bouzar A. B., Jacques J. R., Cosse J. P., Gillet N., Callebaut I., Reichert M., Willems L. 2015; Mutation of a single envelope N-linked glycosylation site enhances the pathogenicity of bovine leukemia virus. J Virol 89:8945–8956 [View Article][PubMed]
    [Google Scholar]
  8. Dequiedt F., Hanon E., Kerkhofs P., Pastoret P. P., Portetelle D., Burny A., Kettmann R., Willems L. 1997; Both wild-type and strongly attenuated bovine leukemia viruses protect peripheral blood mononuclear cells from apoptosis. J Virol 71:630–639[PubMed]
    [Google Scholar]
  9. Durkin K., Rosewick N., Artesi M., Hahaut V., Griebel P., Arsic N., Burny A., Georges M., Van den Broeke A. 2016; Characterization of novel Bovine Leukemia virus (BLV) antisense transcripts by deep sequencing reveals constitutive expression in tumors and transcriptional interaction with viral microRNAs. Retrovirology 13:33 [View Article][PubMed]
    [Google Scholar]
  10. Ferrer J. F., Cabradilla C., Gupta P. 1981; Use of a feline cell line in the syncytia infectivity assay for the detection of bovine leukemia virus infection in cattle. Am J Vet Res 42:9–14[PubMed]
    [Google Scholar]
  11. Florins A., Gillet N., Asquith B., Debacq C., Jean G., Schwartz-Cornil I., Bonneau M., Burny A., Reichert M. et al. 2006; Spleen-dependent turnover of CD11b peripheral blood B lymphocytes in bovine leukemia virus-infected sheep. J Virol 80:11998–12008 [View Article][PubMed]
    [Google Scholar]
  12. Florins A., Gillet N., Boxus M., Kerkhofs P., Kettmann R., Willems L. 2007; Even attenuated bovine leukemia virus proviruses can be pathogenic in sheep. J Virol 81:10195–10200 [View Article][PubMed]
    [Google Scholar]
  13. Florins A., Boxus M., Vandermeers F., Verlaeten O., Bouzar A. B., Defoiche J., Hubaux R., Burny A., Kettmann R., Willems L. 2008; Emphasis on cell turnover in two hosts infected by bovine leukemia virus: a rationale for host susceptibility to disease. Vet Immunol Immunopathol 125:1–7 [View Article][PubMed]
    [Google Scholar]
  14. Gillet N., Florins A., Boxus M., Burteau C., Nigro A., Vandermeers F., Balon H., Bouzar A. B., Defoiche J. et al. 2007; Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology 4:18 [View Article][PubMed]
    [Google Scholar]
  15. Hiraragi H., Michael B., Nair A., Silic-Benussi M., Ciminale V., Lairmore M. 2005; Human T-lymphotropic virus type 1 mitochondrion-localizing protein p13II sensitizes Jurkat T cells to ras-mediated apoptosis. J Virol 79:9449–9457 [View Article][PubMed]
    [Google Scholar]
  16. Jimba M., Takeshima S. N., Matoba K., Endoh D., Aida Y. 2010; BLV-CoCoMo-qPCR: quantitation of bovine leukemia virus proviral load using the CoCoMo algorithm. Retrovirology 7:91 [View Article][PubMed]
    [Google Scholar]
  17. Juliarena M. A., Poli M., Sala L., Ceriani C., Gutierrez S., Dolcini G., Rodríguez E. M., Mariño B., Rodríguez-Dubra C., Esteban E. N. 2008; Association of BLV infection profiles with alleles of the BoLA-DRB3.2 gene. Anim Genet 39:432–438 [View Article][PubMed]
    [Google Scholar]
  18. Kerkhofs P., Heremans H., Burny A., Kettmann R., Willems L. 1998; In vitro and in vivo oncogenic potential of bovine leukemia virus G4 protein. J Virol 72:2554–2559[PubMed]
    [Google Scholar]
  19. Kettmann R., Deschamps J., Cleuter Y., Couez D., Burny A., Marbaix G. 1982; Leukemogenesis by bovine leukemia virus: proviral DNA integration and lack of RNA expression of viral long terminal repeat and 3′ proximate cellular sequences. Proc Natl Acad Sci U S A 79:2465–2469 [View Article][PubMed]
    [Google Scholar]
  20. Kono Y., Hatakeyama H., Ishikawa H., Sentsui H. 1981; Antibody titers in cattle clinically and subclinically infected with bovine leukemia virus. Vet Microbiol 6:167–170 [View Article]
    [Google Scholar]
  21. Kono Y., Sentsui H., Arai K., Ishida H., Irishio W. 1983; Contact transmission of bovine leukemia virus under insect-free conditions. Nihon Juigaku Zasshi 45:799–802 [View Article][PubMed]
    [Google Scholar]
  22. Lairmore M. D. 2014; Animal models of bovine leukemia virus and human T-lymphotrophic virus type-1: insights in transmission and pathogenesis. Annu Rev Anim Biosci 2:189–208 [View Article][PubMed]
    [Google Scholar]
  23. Lee E., Kim E. J., Ratthanophart J., Vitoonpong R., Kim B. H., Cho I. S., Song J. Y., Lee K. K., Shin Y. K. 2016; Molecular epidemiological and serological studies of bovine leukemia virus (BLV) infection in Thailand cattle. Infect Genet Evol 41:245–254 [View Article]
    [Google Scholar]
  24. Lefèbvre L., Vanderplasschen A., Ciminale V., Heremans H., Dangoisse O., Jauniaux J. C., Toussaint J. F., Zelnik V., Burny A. et al. 2002; Oncoviral bovine leukemia virus G4 and human T-cell leukemia virus type 1 p13(II) accessory proteins interact with farnesyl pyrophosphate synthetase. J Virol 76:1400–1414 [View Article][PubMed]
    [Google Scholar]
  25. Miyasaka T., Takeshima S. N., Jimba M., Matsumoto Y., Kobayashi N., Matsuhashi T., Sentsui H., Aida Y. 2013; Identification of bovine leukocyte antigen class II haplotypes associated with variations in bovine leukemia virus proviral load in Japanese black cattle. Tissue Antigens 81:72–82 [View Article][PubMed]
    [Google Scholar]
  26. Murakami K., Sentsui H., Inoshima Y., Inumaru S. 2004; Increase in gammadelta T cells in the blood of cattle persistently infected with bovine leukemia virus following administration of recombinant bovine IFN-gamma. Vet Immunol Immunopathol 101:61–71 [View Article][PubMed]
    [Google Scholar]
  27. Nagaoka Y., Kabeya H., Onuma M., Kasai N., Okada K., Aida Y. 1999; Ovine MHC class II DRB1 alleles associated with resistance or susceptibility to development of bovine leukemia virus-induced ovine lymphoma. Cancer Res 59:975–981[PubMed]
    [Google Scholar]
  28. Ott S. L., Johnson R., Wells S. J. 2003; Association between bovine-leukosis virus seroprevalence and herd-level productivity on US dairy farms. Prev Vet Med 61:249–262 [View Article][PubMed]
    [Google Scholar]
  29. Polat M., Takeshima S. N., Hosomichi K., Kim J., Miyasaka T., Yamada K., Arainga M., Murakami T., Matsumoto Y. et al. 2016; A new genotype of bovine leukemia virus in South America identified by NGS-based whole genome sequencing and molecular evolutionary genetic analysis. Retrovirology 13:4 [View Article][PubMed]
    [Google Scholar]
  30. Pyeon D., Splitter G. A. 1999; Regulation of bovine leukemia virus tax and pol mRNA levels by interleukin-2 and -10. J Virol 73:8427–8434[PubMed]
    [Google Scholar]
  31. Schwartz I., Lévy D. 1994; Pathobiology of bovine leukemia virus. Vet Res 25:521–536[PubMed]
    [Google Scholar]
  32. Silic-Benussi M., Cavallari I., Zorzan T., Rossi E., Hiraragi H., Rosato A., Horie K., Saggioro D., Lairmore M. D. et al. 2004; Suppression of tumor growth and cell proliferation by p13II, a mitochondrial protein of human T cell leukemia virus type 1. Proc Natl Acad Sci U S A 101:6629–6634 [View Article][PubMed]
    [Google Scholar]
  33. Somura Y., Sugiyama E., Fujikawa H., Murakami K. 2014; Comparison of the copy numbers of bovine leukemia virus in the lymph nodes of cattle with enzootic bovine leukosis and cattle with latent infection. Arch Virol 159:2693–2697 [View Article][PubMed]
    [Google Scholar]
  34. Starkenburg R. J., Hansen L. B., Kehrli M. E Jr., Chester-Jones H. 1997; Frequencies and effects of alternative DRB3.2 alleles of bovine lymphocyte antigen for Holsteins in milk selection and control lines. J Dairy Sci 80:3411–3419 [View Article][PubMed]
    [Google Scholar]
  35. Tajima S., Ikawa Y., Aida Y. 1998; Complete bovine leukemia virus (BLV) provirus is conserved in BLV-infected cattle throughout the course of B-cell lymphosarcoma development. J Virol 72:7569–7576[PubMed]
    [Google Scholar]
  36. Van Der Maaten M. J., Miller J. M. 1975; Replication of bovine leukemia virus in monolayer cell cultures. Bibl Haematol 43:360–362[PubMed]
    [Google Scholar]
  37. Willems L., Burny A., Collete D., Dangoisse O., Dequiedt F., Gatot J. S., Kerkhofs P., Lefèbvre L., Merezak C. et al. 2000; Genetic determinants of bovine leukemia virus pathogenesis. AIDS Res Hum Retroviruses 16:1787–1795 [View Article][PubMed]
    [Google Scholar]
  38. Xu A., van Eijk M. J., Park C., Lewin H. A. 1993; Polymorphism in BoLA-DRB3 exon 2 correlates with resistance to persistent lymphocytosis caused by bovine leukemia virus. J Immunol 151:6977–6985[PubMed]
    [Google Scholar]
  39. Yanagihara R., Saitou N., Nerurkar V. R., Song K. J., Bastian I., Franchini G., Gajdusek D. C. 1995; Molecular phylogeny and dissemination of human T-cell lymphotropic virus type I viewed within the context of primate evolution and human migration. Cell Mol Biol 41:S145–S161[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000583
Loading
/content/journal/jgv/10.1099/jgv.0.000583
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error