1887

Abstract

Dendritic cells (DC) are central to the initiation of immune responses, and various approaches have been used to target vaccines to DC in order to improve immunogenicity. Cannulation of lymphatic vessels allows for the collection of DC that migrate from the skin. These migrating DC are involved in antigen uptake and presentation following vaccination. Human replication-deficient adenovirus (AdV) 5 is a promising vaccine vector for delivery of recombinant antigens. Although the mechanism of AdV attachment and penetration has been extensively studied in permissive cell lines, few studies have addressed the interaction of AdV with DC. In this study, we investigated the interaction of bovine skin-migrating DC and replication-deficient AdV-based vaccine vectors. We found that, despite lack of expression of Coxsackie B–Adenovirus Receptor and other known adenovirus receptors, AdV readily enters skin-draining DC via an actin-dependent endocytosis. Virus exit from endosomes was pH independent, and neutralizing antibodies did not prevent virus entry but did prevent virus translocation to the nucleus. We also show that combining adenovirus with adjuvant increases the absolute number of intracellular virus particles per DC but not the number of DC containing intracellular virus. This results in increased trans-gene expression and antigen presentation. We propose that, in the absence of Coxsackie B–Adenovirus Receptor and other known receptors, AdV5-based vectors enter skin-migrating DC using actin-dependent endocytosis which occurs in skin-migrating DC, and its relevance to vaccination strategies and vaccine vector targeting is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000581
2016-10-13
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/10/2703.html?itemId=/content/journal/jgv/10.1099/jgv.0.000581&mimeType=html&fmt=ahah

References

  1. Adams W. C., Bond E., Havenga M. J., Holterman L., Goudsmit J., Karlsson Hedestam G. B., Koup R. A., Loré K.. 2009; Adenovirus serotype 5 infects human dendritic cells via a coxsackievirus-adenovirus receptor-independent receptor pathway mediated by lactoferrin and DC-SIGN. J Gen Virol90:1600–1610 [CrossRef][PubMed]
    [Google Scholar]
  2. Ahi Y. S., Bangari D. S., Mittal S. K.. 2011; Adenoviral vector immunity: its implications and circumvention strategies. Curr Gene Ther11:307–320 [CrossRef][PubMed]
    [Google Scholar]
  3. Alba R., Bradshaw A. C., Parker A. L., Bhella D., Waddington S. N., Nicklin S. A., van Rooijen N., Custers J., Goudsmit J. et al. 2009; Identification of coagulation factor (F)X binding sites on the adenovirus serotype 5 hexon: effect of mutagenesis on FX interactions and gene transfer. Blood114:965–971 [CrossRef][PubMed]
    [Google Scholar]
  4. Ashbourne Excoffon K. J., Moninger T., Zabner J.. 2003; The coxsackie B virus and adenovirus receptor resides in a distinct membrane microdomain. J Virol77:2559–2567 [CrossRef][PubMed]
    [Google Scholar]
  5. Bergelson J. M., Cunningham J. A., Droguett G., Kurt-Jones E. A., Krithivas A., Hong J. S., Horwitz M. S., Crowell R. L., Finberg R. W.. 1997; Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science275:1320–1323 [CrossRef][PubMed]
    [Google Scholar]
  6. Bremner K. H., Scherer J., Yi J., Vershinin M., Gross S. P., Vallee R. B.. 2009; Adenovirus transport via direct interaction of cytoplasmic dynein with the viral capsid hexon subunit. Cell Host Microbe6:523–535 [CrossRef][PubMed]
    [Google Scholar]
  7. Brooke G. P., Parsons K. R., Howard C. J.. 1998; Cloning of two members of the SIRP alpha family of protein tyrosine phosphatase binding proteins in cattle that are expressed on monocytes and a subpopulation of dendritic cells and which mediate binding to CD4 T cells. Eur J Immunol28:1–11 [CrossRef][PubMed]
    [Google Scholar]
  8. Burckhardt C. J., Suomalainen M., Schoenenberger P., Boucke K., Hemmi S., Greber U. F.. 2011; Drifting motions of the adenovirus receptor CAR and immobile integrins initiate virus uncoating and membrane lytic protein exposure. Cell Host Microbe10:105–117 [CrossRef][PubMed]
    [Google Scholar]
  9. Cao W., Henry M. D., Borrow P., Yamada H., Elder J. H., Ravkov E. V., Nichol S. T., Compans R. W., Campbell K. P., Oldstone M. B.. 1998; Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science282:2079–2081 [CrossRef][PubMed]
    [Google Scholar]
  10. Chanter N., Rutter J. M., Luther P. D.. 1986; Rapid detection of toxigenic Pasteurella multocida by an agar overlay method. Vet Rec119:629–630[PubMed]
    [Google Scholar]
  11. Chen C. L., Hou W. H., Liu I. H., Hsiao G., Huang S. S., Huang J. S.. 2009; Inhibitors of clathrin-dependent endocytosis enhance TGFbeta signaling and responses. J Cell Sci122:1863–1871 [CrossRef][PubMed]
    [Google Scholar]
  12. Chen R. F., Lee C. Y.. 2014; Adenoviruses types, cell receptors and local innate cytokines in adenovirus infection. Int Rev Immunol33:45–53 [CrossRef][PubMed]
    [Google Scholar]
  13. Christoforidis S., McBride H. M., Burgoyne R. D., Zerial M.. 1999; The Rab5 effector EEA1 is a core component of endosome docking. Nature397:621–625 [CrossRef][PubMed]
    [Google Scholar]
  14. Cooper J. A.. 1987; Effects of cytochalasin and phalloidin on actin. J Cell Biol105:1473–1478 [CrossRef][PubMed]
    [Google Scholar]
  15. Cubillos-Zapata C., Guzman E., Turner A., Gilbert S. C., Prentice H., Hope J. C., Charleston B.. 2011; Differential effects of viral vectors on migratory afferent lymph dendritic cells in vitro predict enhanced immunogenicity in vivo. J Virol85:9385–9394 [CrossRef][PubMed]
    [Google Scholar]
  16. de Vries E., Tscherne D. M., Wienholts M. J., Cobos-Jiménez V., Scholte F., García-Sastre A., Rottier P. J., de Haan C. A.. 2011; Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog7:e1001329 [CrossRef][PubMed]
    [Google Scholar]
  17. Dicks M. D., Guzman E., Spencer A. J., Gilbert S. C., Charleston B., Hill A. V., Cottingham M. G.. 2015; The relative magnitude of transgene-specific adaptive immune responses induced by human and chimpanzee adenovirus vectors differs between laboratory animals and a target species. Vaccine33:1121–1128 [CrossRef][PubMed]
    [Google Scholar]
  18. Downey G. P., Botelho R. J., Butler J. R., Moltyaner Y., Chien P., Schreiber A. D., Grinstein S.. 1999; Phagosomal maturation, acidification, and inhibition of bacterial growth in nonphagocytic cells transfected with FcgammaRIIA receptors. J Biol Chem274:28436–28444 [CrossRef][PubMed]
    [Google Scholar]
  19. Ellis S. A., Staines K. A., Morrison W. I.. 1996; cDNA sequence of cattle MHC class I genes transcribed in serologically defined haplotypes A18 and A31. Immunogenetics43:156–159 [CrossRef][PubMed]
    [Google Scholar]
  20. Ellis S. A., Staines K. A., Stear M. J., Hensen E. J., Morrison W.. 1998; DNA typing for BoLA class I using sequence-specific primers (PCR-SSP). Eur J Immunogenet25:365–370 [CrossRef][PubMed]
    [Google Scholar]
  21. Firestone A. J., Weinger J. S., Maldonado M., Barlan K., Langston L. D., O'Donnell M., Gelfand V. I., Kapoor T. M., Chen J. K.. 2012; Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein. Nature484:125–129 [CrossRef][PubMed]
    [Google Scholar]
  22. Ganne V., Eloit M., Laval A., Adam M., Trouve G.. 1994; Enhancement of the efficacy of a replication-defective adenovirus-vectored vaccine by the addition of oil adjuvants. Vaccine12:1190–1196 [CrossRef][PubMed]
    [Google Scholar]
  23. Gliddon D. R., Howard C. J.. 2002; CD26 is expressed on a restricted subpopulation of dendritic cells in vivo. Eur J Immunol32:1472–1481 [CrossRef][PubMed]
    [Google Scholar]
  24. Gliddon D. R., Hope J. C., Brooke G. P., Howard C. J.. 2004; DEC-205 expression on migrating dendritic cells in afferent lymph. Immunology111:262–272 [CrossRef][PubMed]
    [Google Scholar]
  25. Greber U. F., Willetts M., Webster P., Helenius A.. 1993; Stepwise dismantling of adenovirus 2 during entry into cells. Cell75:477–486 [CrossRef][PubMed]
    [Google Scholar]
  26. Green C. A., Scarselli E., Sande C. J., Thompson A. J., de Lara C. M., Taylor K. S., Haworth K., Del Sorbo M., Angus B. et al. 2015; Chimpanzee adenovirus- and MVA-vectored respiratory syncytial virus vaccine is safe and immunogenic in adults. Sci Transl Med7:300ra126 [CrossRef][PubMed]
    [Google Scholar]
  27. Guzman E., Taylor G., Charleston B., Skinner M. A., Ellis S. A.. 2008; An MHC-restricted CD8+ T-cell response is induced in cattle by foot-and-mouth disease virus (FMDV) infection and also following vaccination with inactivated FMDV. J Gen Virol89:667–675 [CrossRef][PubMed]
    [Google Scholar]
  28. Guzman E., Cubillos-Zapata C., Cottingham M. G., Gilbert S. C., Prentice H., Charleston B., Hope J. C.. 2012; Modified vaccinia virus Ankara-based vaccine vectors induce apoptosis in dendritic cells draining from the skin via both the extrinsic and intrinsic caspase pathways, preventing efficient antigen presentation. J Virol86:5452–5466 [CrossRef][PubMed]
    [Google Scholar]
  29. Hemati B., Contreras V., Urien C., Bonneau M., Takamatsu H. H., Mertens P. P., Bréard E., Sailleau C., Zientara S., Schwartz-Cornil I.. 2009; Bluetongue virus targets conventional dendritic cells in skin lymph. J Virol83:8789–8799 [CrossRef][PubMed]
    [Google Scholar]
  30. Hope J. C., Howard C. J., Prentice H., Charleston B.. 2006; Isolation and purification of afferent lymph dendritic cells that drain the skin of cattle. Nat Protoc1:982–987 [CrossRef][PubMed]
    [Google Scholar]
  31. Hope J. C., Guzman E., Cubillos-Zapata C., Stephens S. A., Gilbert S. C., Prentice H., Sopp P., Howard C. J., Charleston B.. 2012; Migratory sub-populations of afferent lymphatic dendritic cells differ in their interactions with Mycobacterium bovis Bacille Calmette Guerin. Vaccine30:2357–2367 [CrossRef][PubMed]
    [Google Scholar]
  32. Howard C. J., Naessens J.. 1993; Summary of workshop findings for cattle (tables 1 and 2). Vet Immunol Immunopathol39:25–47 [CrossRef][PubMed]
    [Google Scholar]
  33. Howard C. J., Morrison W., Bensaid A., Davis W., Eskra L., Gerdes J., Hadam M., Hurley D., Leibold W. et al. 1991; Summary of workshop findings for leukocyte antigens of cattle. Vet Immunol Immunopathol27:21–27 [CrossRef][PubMed]
    [Google Scholar]
  34. Howard C. J., Sopp P., Brownlie J., Kwong L. S., Parsons K. R., Taylor G.. 1997; Identification of two distinct populations of dendritic cells in afferent lymph that vary in their ability to stimulate T cells. J Immunol159:5372–5382[PubMed]
    [Google Scholar]
  35. Huang S., Kamata T., Takada Y., Ruggeri Z. M., Nemerow G. R.. 1996; Adenovirus interaction with distinct integrins mediates separate events in cell entry and gene delivery to hematopoietic cells. J Virol70:4502–4508[PubMed]
    [Google Scholar]
  36. Jindadamrongwech S., Smith D. R.. 2004; Virus Overlay Protein Binding Assay (VOPBA) reveals serotype specific heterogeneity of dengue virus binding proteins on HepG2 human liver cells. Intervirology47:370–373 [CrossRef][PubMed]
    [Google Scholar]
  37. Kalyuzhniy O., Di Paolo N. C., Silvestry M., Hofherr S. E., Barry M. A., Stewart P. L., Shayakhmetov D. M.. 2008; Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proc Natl Acad Sci U S A105:5483–5488 [CrossRef][PubMed]
    [Google Scholar]
  38. Karger A., Mettenleiter T. C.. 1996; Identification of cell surface molecules that interact with pseudorabies virus. J Virol70:2138–2145[PubMed]
    [Google Scholar]
  39. Macia E., Ehrlich M., Massol R., Boucrot E., Brunner C., Kirchhausen T.. 2006; Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell10:839–850 [CrossRef][PubMed]
    [Google Scholar]
  40. Mallery D. L., McEwan W. A., Bidgood S. R., Towers G. J., Johnson C. M., James L. C.. 2010; Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proc Natl Acad Sci U S A107:19985–19990 [CrossRef][PubMed]
    [Google Scholar]
  41. Meier O., Gastaldelli M., Boucke K., Hemmi S., Greber U. F.. 2005; Early steps of clathrin-mediated endocytosis involved in phagosomal escape of Fcgamma receptor-targeted adenovirus. J Virol79:2604–2613 [CrossRef][PubMed]
    [Google Scholar]
  42. Mellman I., Fuchs R., Helenius A.. 1986; Acidification of the endocytic and exocytic pathways. Annu Rev Biochem55:663–700 [CrossRef][PubMed]
    [Google Scholar]
  43. Otero M. J., Carrasco L.. 1987; Proteins are cointernalized with virion particles during early infection. Virology160:75–80 [CrossRef][PubMed]
    [Google Scholar]
  44. Platt C. D., Ma J. K., Chalouni C., Ebersold M., Bou-Reslan H., Carano R. A., Mellman I., Delamarre L.. 2010; Mature dendritic cells use endocytic receptors to capture and present antigens. Proc Natl Acad Sci U S A107:4287–4292 [CrossRef][PubMed]
    [Google Scholar]
  45. Puntener D., Engelke M. F., Ruzsics Z., Strunze S., Wilhelm C., Greber U. F.. 2011; Stepwise loss of fluorescent core protein V from human adenovirus during entry into cells. J Virol85:481–496 [CrossRef][PubMed]
    [Google Scholar]
  46. Rodríguez E., Everitt E.. 1996; Adenovirus uncoating and nuclear establishment are not affected by weak base amines. J Virol70:3470–3477[PubMed]
    [Google Scholar]
  47. Rossi M., Young J. W.. 2005; Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol175:1373–1381 [CrossRef][PubMed]
    [Google Scholar]
  48. Rothberg K. G., Heuser J. E., Donzell W. C., Ying Y. S., Glenney J. R., Anderson R. G.. 1992; Caveolin, a protein component of caveolae membrane coats. Cell68:673–682 [CrossRef][PubMed]
    [Google Scholar]
  49. Roy S., Clawson D. S., Calcedo R., Lebherz C., Sanmiguel J., Wu D., Wilson J. M.. 2005; Use of chimeric adenoviral vectors to assess capsid neutralization determinants. Virology333:207–214 [CrossRef][PubMed]
    [Google Scholar]
  50. Sakr S. W., Eddy R. J., Barth H., Wang F., Greenberg S., Maxfield F. R., Tabas I.. 2001; The uptake and degradation of matrix-bound lipoproteins by macrophages require an intact actin cytoskeleton, Rho family GTPases, and myosin ATPase activity. J Biol Chem276:37649–37658 [CrossRef][PubMed]
    [Google Scholar]
  51. Sallusto F., Cella M., Danieli C., Lanzavecchia A.. 1995; Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med182:389–400 [CrossRef][PubMed]
    [Google Scholar]
  52. Sandgren K. J., Wilkinson J., Miranda-Saksena M., McInerney G. M., Byth-Wilson K., Robinson P. J., Cunningham A. L.. 2010; A differential role for macropinocytosis in mediating entry of the two forms of vaccinia virus into dendritic cells. PLoS Pathog6:e1000866 [CrossRef][PubMed]
    [Google Scholar]
  53. Savina A., Amigorena S.. 2007; Phagocytosis and antigen presentation in dendritic cells. Immunol Rev219:143–156 [CrossRef][PubMed]
    [Google Scholar]
  54. Schwartz-Cornil I., Epardaud M., Bonneau M.. 2006; Cervical duct cannulation in sheep for collection of afferent lymph dendritic cells from head tissues. Nat Protoc1:874–879 [CrossRef][PubMed]
    [Google Scholar]
  55. Sirena D., Lilienfeld B., Eisenhut M., Kälin S., Boucke K., Beerli R. R., Vogt L., Ruedl C., Bachmann M. F. et al. 2004; The human membrane cofactor CD46 is a receptor for species B adenovirus serotype 3. J Virol78:4454–4462 [CrossRef][PubMed]
    [Google Scholar]
  56. Smith J. G., Cassany A., Gerace L., Ralston R., Nemerow G. R.. 2008; Neutralizing antibody blocks adenovirus infection by arresting microtubule-dependent cytoplasmic transport. J Virol82:6492–6500 [CrossRef][PubMed]
    [Google Scholar]
  57. Smith J. G., Wiethoff C. M., Stewart P. L., Nemerow G. R.. 2010; Adenovirus. Curr Top Microbiol Immunol343:195–224 [CrossRef][PubMed]
    [Google Scholar]
  58. Sonawane N. D., Thiagarajah J. R., Verkman A. S.. 2002; Chloride concentration in endosomes measured using a ratioable fluorescent Cl indicator: evidence for chloride accumulation during acidification. J Biol Chem277:5506–5513 [CrossRef][PubMed]
    [Google Scholar]
  59. Steinman R. M.. 1991; The dendritic cell system and its role in immunogenicity. Annu Rev Immunol9:271–296 [CrossRef][PubMed]
    [Google Scholar]
  60. Steinman R. M., Cohn Z. A.. 1973; Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med137:1142–1162[PubMed][CrossRef]
    [Google Scholar]
  61. Sumida S. M., Truitt D. M., Lemckert A. A., Vogels R., Custers J. H., Addo M. M., Lockman S., Peter T., Peyerl F. W. et al. 2005; Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein. J Immunol174:7179–7185 [CrossRef][PubMed]
    [Google Scholar]
  62. Suomalainen M., Luisoni S., Boucke K., Bianchi S., Engel D. A., Greber U. F.. 2013; A direct and versatile assay measuring membrane penetration of adenovirus in single cells. J Virol87:12367–12379 [CrossRef][PubMed]
    [Google Scholar]
  63. Svensson U., Persson R.. 1984; Entry of adenovirus 2 into HeLa cells. J Virol51:687–694[PubMed]
    [Google Scholar]
  64. Taylor G., Thom M., Capone S., Pierantoni A., Guzman E., Herbert R., Scarselli E., Napolitano F., Giuliani A. et al. 2015; Efficacy of a virus-vectored vaccine against human and bovine respiratory syncytial virus infections. Sci Transl Med7:300ra127 [CrossRef][PubMed]
    [Google Scholar]
  65. Tayyari F., Marchant D., Moraes T. J., Duan W., Mastrangelo P., Hegele R. G.. 2011; Identification of nucleolin as a cellular receptor for human respiratory syncytial virus. Nat Med17:1132–1135 [CrossRef][PubMed]
    [Google Scholar]
  66. Thom M. L., McAulay M., Vordermeier H. M., Clifford D., Hewinson R. G., Villarreal-Ramos B., Hope J. C.. 2012; Duration of immunity against Mycobacterium bovis following neonatal vaccination with bacillus Calmette-Guérin Danish: significant protection against infection at 12, but not 24, months. Clin Vaccine Immunol19:1254–1260 [CrossRef][PubMed]
    [Google Scholar]
  67. Vieth J. A., Kim M. K., Pan X. Q., Schreiber A. D., Worth R. G.. 2010; Differential requirement of lipid rafts for FcγRIIA mediated effector activities. Cell Immunol265:111–119 [CrossRef][PubMed]
    [Google Scholar]
  68. Waddington S. N., McVey J. H., Bhella D., Parker A. L., Barker K., Atoda H., Pink R., Buckley S. M., Greig J. A. et al. 2008; Adenovirus serotype 5 hexon mediates liver gene transfer. Cell132:397–409 [CrossRef][PubMed]
    [Google Scholar]
  69. Wald M., Olejár T., Sebková V., Zadinová M., Boubelík M., Poucková P.. 2001; Mixture of trypsin, chymotrypsin and papain reduces formation of metastases and extends survival time of C57Bl6 mice with syngeneic melanoma B16. Cancer Chemother Pharmacol47:S16–S22 [CrossRef][PubMed]
    [Google Scholar]
  70. Wan C. P., Park C. S., Lau B. H.. 1993; A rapid and simple microfluorometric phagocytosis assay. J Immunol Methods162:1–7 [CrossRef][PubMed]
    [Google Scholar]
  71. Wang L. H., Rothberg K. G., Anderson R. G.. 1993; Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol123:1107–1117 [CrossRef][PubMed]
    [Google Scholar]
  72. West M. A., Bretscher M. S., Watts C.. 1989; Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. J Cell Biol109:2731–2739[PubMed][CrossRef]
    [Google Scholar]
  73. Whelan A. O., Hope J. C., Howard C. J., Clifford D., Hewinson R. G., Vordermeier H. M.. 2003; Modulation of the bovine delayed-type hypersensitivity responses to defined mycobacterial antigens by a synthetic bacterial lipopeptide. Infect Immun71:6420–6425 [CrossRef][PubMed]
    [Google Scholar]
  74. Wiethoff C. M., Wodrich H., Gerace L., Nemerow G. R.. 2005; Adenovirus protein VI mediates membrane disruption following capsid disassembly. J Virol79:1992–2000 [CrossRef][PubMed]
    [Google Scholar]
  75. Wolfrum N., Greber U. F.. 2013; Adenovirus signalling in entry. Cell Microbiol15:53–62 [CrossRef][PubMed]
    [Google Scholar]
  76. Yoshimori T., Yamamoto A., Moriyama Y., Futai M., Tashiro Y.. 1991; Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem266:17707–17712[PubMed]
    [Google Scholar]
  77. Zhang Y., Bergelson J. M.. 2005; Adenovirus receptors. J Virol79:12125–12131 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000581
Loading
/content/journal/jgv/10.1099/jgv.0.000581
Loading

Data & Media loading...

Supplements

Supplementary File 1

WORD

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error