1887

Abstract

In viruses, uncoating and RNA release are two key steps of successfully infecting a target cell. During these steps, the capsid must undergo the necessary conformational changes to allow RNA egress. Despite their importance, these processes are poorly understood in the family . Here, we used X-ray crystallography to solve the atomic structure of a (TrV) empty particle (Protein Data Bank ID 5L7O), which is the resulting capsid after RNA release. It is observed that the overall shape of the capsid and of the three individual proteins is maintained in comparison with the mature virion. Furthermore, no channels indicative of RNA release are formed in the TrV empty particle. However, the most prominent change in the empty particle when compared with the mature virion is the loss of order in the N-terminal domain of the VP2 protein. In mature virions, the VP2 N-terminal domain of one pentamer is swapped with its twofold related copy in an adjacent pentamer, thereby stabilizing the binding between the pentamers. The loss of these interactions allows us to propose that RNA release may take place through transient flipping-out of pentameric subunits. The lower number of stabilizing interactions between the pentamers and the lack of formation of new holes support this model. This model differs from the currently accepted model for rhinoviruses and enteroviruses, in which genome externalization occurs by extrusion of the RNA through capsid channels.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000580
2016-10-13
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/10/2769.html?itemId=/content/journal/jgv/10.1099/jgv.0.000580&mimeType=html&fmt=ahah

References

  1. Agirre J., Aloria K., Arizmendi J. M., Iloro I., Elortza F., Sánchez-Eugenia R., Marti G. A., Neumann E., Rey F. A., Guérin D. M.. 2011; Capsid protein identification and analysis of mature Triatoma virus (TrV) virions and naturally occurring empty particles. Virology409:91–101 [CrossRef][PubMed]
    [Google Scholar]
  2. Agirre J., Goret G., LeGoff M., Sánchez-Eugenia R., Marti G. A., Navaza J., Guérin D. M., Neumann E.. 2013; Cryo-electron microscopy reconstructions of triatoma virus particles: a clue to unravel genome delivery and capsid disassembly. J Gen Virol94:1058–1068 [CrossRef][PubMed]
    [Google Scholar]
  3. Bakker S. E., Groppelli E., Pearson A. R., Stockley P. G., Rowlands D. J., Ranson N. A.. 2014; Limits of structural plasticity in a picornavirus capsid revealed by a massively expanded equine rhinitis a virus particle. J Virol88:6093–6099 [CrossRef][PubMed]
    [Google Scholar]
  4. Baxt B., Bachrach H. L.. 1980; Early interactions of foot-and-mouth disease virus with cultured cells. Virology104:42–55 [CrossRef][PubMed]
    [Google Scholar]
  5. Belnap D. M., Filman D. J., Trus B. L., Cheng N., Booy F. P., Conway J. F., Curry S., Hiremath C. N., Tsang S. K. et al. 2000; Molecular tectonic model of virus structural transitions: the putative cell entry states of poliovirus. J Virol74:1342–1354 [CrossRef][PubMed]
    [Google Scholar]
  6. Bennett M. J., Schlunegger M. P., Eisenberg D.. 1995; 3D domain swapping: a mechanism for oligomer assembly. Protein Sci4:2455–2468 [CrossRef][PubMed]
    [Google Scholar]
  7. Bonning B. C., Miller W. A.. 2010; Dicistroviruses. Annu Rev Entomol55:129–150 [CrossRef][PubMed]
    [Google Scholar]
  8. Bostina M., Levy H., Filman D. J., Hogle J. M.. 2011; Poliovirus RNA is released from the capsid near a twofold symmetry axis. J Virol85:776–783 [CrossRef][PubMed]
    [Google Scholar]
  9. Brown F., Cartwright B.. 1961; Dissociation of foot-and-mouth disease virus into its nucleic acid and protein components. Nature192:1163–1164 [CrossRef][PubMed]
    [Google Scholar]
  10. Bubeck D., Filman D. J., Cheng N., Steven A. C., Hogle J. M., Belnap D. M.. 2005; The structure of the poliovirus 135S cell entry intermediate at 10-angstrom resolution reveals the location of an externalized polypeptide that binds to membranes. J Virol79:7745–7755 [CrossRef][PubMed]
    [Google Scholar]
  11. Cowtan K., Main P.. 1998; Miscellaneous algorithms for density modification. Acta Crystallogr Sect D Biol Crystallogr54:487–493 [CrossRef]
    [Google Scholar]
  12. Czibener C., La Torre J. L., Muscio O. A., Ugalde R. A., Scodeller E. A.. 2000; Nucleotide sequence analysis of Triatoma virus shows that it is a member of a novel group of insect RNA viruses. J Gen Virol81:1149–1154 [CrossRef][PubMed]
    [Google Scholar]
  13. Emsley P., Lohkamp B., Scott W. G., Cowtan K.. 2010; Features and development of Coot. Acta Crystallogr Sect D Biol Crystallogr66:486–501 [CrossRef]
    [Google Scholar]
  14. Garriga D., Pickl-Herk A., Luque D., Wruss J., Castón J. R., Blaas D., Verdaguer N.. 2012; Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid. PLoS Pathog8:e1002473 [CrossRef][PubMed]
    [Google Scholar]
  15. Grant R. A., Hiremath C. N., Filman D. J., Syed R., Andries K., Hogle J. M.. 1994; Structures of poliovirus complexes with anti-viral drugs: implications for viral stability and drug design. Curr Biol4:784–797 [CrossRef][PubMed]
    [Google Scholar]
  16. Grayson M., Clayton J., Coura J. R., Viñas P. A., Petherick A.. 2010; Chagas disease. Nature115:S3–S22[CrossRef]
    [Google Scholar]
  17. Hewat E. A., Neumann E., Blaas D.. 2002; The concerted conformational changes during human rhinovirus 2 uncoating. Mol Cell10:317–326 [CrossRef][PubMed]
    [Google Scholar]
  18. Hewat E. A., Blaas D.. 2004; Cryoelectron microscopy analysis of the structural changes associated with human rhinovirus type 14 uncoating. J Virol78:2935–2942 [CrossRef][PubMed]
    [Google Scholar]
  19. Kabsch W.. 2010; XDS. Acta Crystallogr Sect D Biol Crystallogr66:125–132[CrossRef]
    [Google Scholar]
  20. Karplus P. A., Diederichs K.. 2012; Linking crystallographic model and data quality. Science336:1030–1033 [CrossRef][PubMed]
    [Google Scholar]
  21. Levy H. C., Bostina M., Filman D. J., Hogle J. M.. 2010; Catching a virus in the act of RNA release: a novel poliovirus uncoating intermediate characterized by cryo-electron microscopy. J Virol84:4426–4441 [CrossRef][PubMed]
    [Google Scholar]
  22. Marti G. A., Echeverría M. G., Susevich M. L., Ceccarelli S., Balsalobre A., Rabinovich G. M. J., Solorzano E., Monroy C. et al. 2013; Exploration for Triatoma virus (TrV) infection in laboratory-reared triatomines of Latin America: a collaborative study*. Int J Trop Insect Sci33:294–304[CrossRef]
    [Google Scholar]
  23. Mayo M. A.. 2002; Virus taxonomy – Houston 2002. Arch Virol147:1071–1076 [CrossRef][PubMed]
    [Google Scholar]
  24. McCoy A. J., Grosse-Kunstleve R. W., Adams P. D., Winn M. D., Storoni L. C., Read R. J.. 2007; Phaser crystallographic software. J Appl Crystallogr40:658–674 [CrossRef][PubMed]
    [Google Scholar]
  25. Murshudov G. N., Skubák P., Lebedev A. A., Pannu N. S., Steiner R. A., Nicholls R. A., Winn M. D., Long F., Vagin A. A.. 2011; REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr Sect D Biol Crystallogr67:355–367 [CrossRef]
    [Google Scholar]
  26. Muscio O. A., La Torre J. L., Scodeller E. A.. 1988; Characterization of Triatoma virus, a picorna-like virus isolated from the triatomine bug Triatoma infestans. J Gen Virol69:2929–2934 [CrossRef][PubMed]
    [Google Scholar]
  27. Muscio O. A., La Torre J., Bonder M. A., Scodeller E. A.. 1997; Triatoma virus pathogenicity in laboratory colonies of Triatoma infestans (Hemiptera: Reduviidae). J Med Entomol34:253–256 [CrossRef][PubMed]
    [Google Scholar]
  28. Panjwani A., Strauss M., Gold S., Wenham H., Jackson T., Chou J. J., Rowlands D. J., Stonehouse N. J., Hogle J. M., Tuthill T. J.. 2014; Capsid protein VP4 of human rhinovirus induces membrane permeability by the formation of a size-selective multimeric pore. PLoS Pathog10:e1004294 [CrossRef][PubMed]
    [Google Scholar]
  29. Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E.. 2004; UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem25:1605–1612 [CrossRef][PubMed]
    [Google Scholar]
  30. Pickl-Herk A., Luque D., Vives-Adrián L., Querol-Audí J., Garriga D., Trus B. L., Verdaguer N., Blaas D., Castón J. R.. 2013; Uncoating of common cold virus is preceded by RNA switching as determined by X-ray and cryo-EM analyses of the subviral a-particle. Proc Natl Acad Sci U S A110:20063–20068 [CrossRef][PubMed]
    [Google Scholar]
  31. Querido J. F. B., Agirre J., Marti G. A., Guérin D. M. A., Silva M. S.. 2013; Molecular techniques for dicistrovirus detection without RNA extraction or purification. Biomed Res Int2013:218593[CrossRef]
    [Google Scholar]
  32. Ren J., Wang X., Hu Z., Gao Q., Sun Y., Li X., Porta C., Walter T. S., Gilbert R. J. et al. 2013; Picornavirus uncoating intermediate captured in atomic detail. Nat Commun4:1929 [CrossRef][PubMed]
    [Google Scholar]
  33. Rossmann M. G., He Y., Kuhn R. J.. 2002; Picornavirus–receptor interactions. Trends Microbiol10:324–331 [CrossRef][PubMed]
    [Google Scholar]
  34. Shingler K. L., Yoder J. L., Carnegie M. S., Ashley R. E., Makhov A. M., Conway J. F., Hafenstein S.. 2013; The enterovirus 71 A-particle forms a gateway to allow genome release: a cryoEM study of picornavirus uncoating. PLoS Pathog9:e1003240 [CrossRef][PubMed]
    [Google Scholar]
  35. Smith T. J., Kremer M. J., Luo M., Vriend G., Arnold E., Kamer G., Rossmann M. G., McKinlay M. A., Diana G. D., Otto M. J.. 1986; The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science233:1286–1293 [CrossRef][PubMed]
    [Google Scholar]
  36. Smyth M., Tate J., Hoey E., Lyons C., Martin S., Stuart D.. 1995; Implications for viral uncoating from the structure of bovine enterovirus. Struct Biol2:224–231 [CrossRef]
    [Google Scholar]
  37. Snijder J., Uetrecht C., Rose R. J., Sanchez-Eugenia R., Marti G. A., Agirre J., Guérin D. M., Wuite G. J., Heck A. J., Roos W. H.. 2013; Probing the biophysical interplay between a viral genome and its capsid. Nat Chem5:502–509 [CrossRef][PubMed]
    [Google Scholar]
  38. Squires G., Pous J., Agirre J., Rozas-Dennis G. S., Costabel M. D., Marti G. A., Navaza J., Bressanelli S., Guérin D. M., Rey F. A.. 2013; Structure of the Triatoma virus capsid. Acta Crystallogr D Biol Crystallogr69:1026–1037 [CrossRef][PubMed]
    [Google Scholar]
  39. Sánchez-Eugenia R., Goikolea J., Gil-Cartón D., Sánchez-Magraner L., Guérin D. M. A.. 2015a; Triatoma virus recombinant VP4 protein induces membrane permeability through dynamic pores. J Virol89:4645–4654 [CrossRef]
    [Google Scholar]
  40. Sánchez-Eugenia R., Méndez F., Querido J. F. B., Silva M. S., Guérin D. M., Rodríguez J. F.. 2015b; Triatoma virus structural polyprotein expression, processing and assembly into virus-like particles. J Gen Virol96:64–73 [CrossRef]
    [Google Scholar]
  41. Tate J., Liljas L., Scotti P., Christian P., Lin T., Johnson J. E.. 1999; The crystal structure of cricket paralysis virus: the first view of a new virus family. Nat Struct Biol6:765–774 [CrossRef][PubMed]
    [Google Scholar]
  42. Tina K. G., Bhadra R., Srinivasan N.. 2007; PIC: protein interactions calculator. Nucleic Acids Res35:W473–W476 [CrossRef][PubMed]
    [Google Scholar]
  43. Tuthill T. J., Harlos K., Walter T. S., Knowles N. J., Groppelli E., Rowlands D. J., Stuart D. I., Fry E. E.. 2009; Equine rhinitis a virus and its low pH empty particle: clues towards an aphthovirus entry mechanism?. PLoS Pathog5:e1000620 [CrossRef][PubMed]
    [Google Scholar]
  44. Wang X., Peng W., Ren J., Hu Z., Xu J., Lou Z., Li X., Yin W., Shen X. et al. 2012; A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat Struct Mol Biol19:424–429 [CrossRef][PubMed]
    [Google Scholar]
  45. Wang X., Ren J., Gao Q., Hu Z., Sun Y., Li X., Rowlands D. J., Yin W., Wang J. et al. 2015; Hepatitis A virus and the origins of picornaviruses. Nature517:85–88 [CrossRef][PubMed]
    [Google Scholar]
  46. Xing L., Casasnovas J. M., Cheng R. H.. 2003; Structural analysis of human rhinovirus complexed with ICAM-1 reveals the dynamics of receptor-mediated virus uncoating. J Virol77:6101–6107 [CrossRef][PubMed]
    [Google Scholar]
  47. Zhang X., Settembre E., Xu C., Dormitzer P. R., Bellamy R., Harrison S. C., Grigorieff N.. 2008; Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc Natl Acad Sci U S A105:1867–1872 [CrossRef][PubMed]
    [Google Scholar]
  48. Zhao R., Hadfield A. T., Kremer M. J., Rossmann M. G.. 1997; Cations in human rhinoviruses. Virology227:13–23 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000580
Loading
/content/journal/jgv/10.1099/jgv.0.000580
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error