1887

Abstract

We are interested in the influence of nucleotide composition on the fundamental characteristics of the virus RNA genome. Most RNA viruses have genomes with a distinct nucleotide composition, e.g. ranging from minimally 12.9 % to maximally 40.3 % (C- and U-count, respectively, in coronavirus HKU). We present a global analysis of diverse virus types, including plus-strand, minus-strand and double-strand RNA viruses, for the impact of this nucleotide preference on the predicted structure of the RNA genome that is packaged in virion particles and on the codon usage in the viral open reading frames. Several virus-specific features will be described, but also some general conclusions were drawn. Without exception, the virus-specific nucleotide bias was enriched in the unpaired, single-stranded regions of the RNA genome, thus creating an even more striking virus-specific signature. We present a simple mechanism that is based on elementary aspects of RNA structure folding to explain this general trend. In general, the nucleotide bias was the major determinant of the virus-specific codon usages, thus limiting a role for codon selection and translational control. We will discuss molecular and evolutionary scenarios that may be responsible for the diverse nucleotide biases of RNA viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000579
2016-10-13
2020-09-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/10/2608.html?itemId=/content/journal/jgv/10.1099/jgv.0.000579&mimeType=html&fmt=ahah

References

  1. Bahir I., Fromer M., Prat Y., Linial M.. 2009; Viral adaptation to host: a proteome-based analysis of codon usage and amino acid preferences. Mol Syst Biol5:311 [CrossRef][PubMed]
    [Google Scholar]
  2. Belalov I. S., Lukashev A. N.. 2013; Causes and implications of codon usage bias in RNA viruses. PLoS One8:e56642 [CrossRef][PubMed]
    [Google Scholar]
  3. Bennetzen J. L., Hall B. D.. 1982; Codon selection in yeast. J Biol Chem257:3026–3031[PubMed]
    [Google Scholar]
  4. Berg R. K., Melchjorsen J., Rintahaka J., Diget E., Søby S., Horan K. A., Gorelick R. J., Matikainen S., Larsen C. S. et al. 2012; Genomic HIV RNA induces innate immune responses through RIG-I-dependent sensing of secondary-structured RNA. PLoS One7:e29291 [CrossRef][PubMed]
    [Google Scholar]
  5. Berkhout B., van Hemert F. J.. 1994; The unusual nucleotide content of the HIV RNA genome results in a biased amino acid composition of HIV proteins. Nucleic Acids Res22:1705–1711 [CrossRef][PubMed]
    [Google Scholar]
  6. Berkhout B., Grigoriev A., Bakker M., Lukashov V. V.. 2002; Codon and amino acid usage in retroviral genomes is consistent with virus-specific nucleotide pressure. AIDS Res Hum Retroviruses18:133–141 [CrossRef][PubMed]
    [Google Scholar]
  7. Berkhout B., van Hemert F.. 2015; On the biased nucleotide composition of the human coronavirus RNA genome. Virus Res202:41–47 [CrossRef][PubMed]
    [Google Scholar]
  8. Carbone A.. 2008; Codon bias is a major factor explaining phage evolution in translationally biased hosts. J Mol Evol66:210–223 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen Y.. 2013; A comparison of synonymous codon usage bias patterns in DNA and RNA virus genomes: quantifying the relative importance of mutational pressure and natural selection. Biomed Res Int2013:406342 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen Y., Chen Y. F.. 2014; Analysis of synonymous codon usage patterns in duck hepatitis A virus: a comparison on the roles of mutual pressure and natural selection. Virusdisease25:285–293 [CrossRef][PubMed]
    [Google Scholar]
  11. Cheung P. P., Rogozin I. B., Choy K. T., Ng H. Y., Peiris J. S., Yen H. L.. 2015; Comparative mutational analyses of influenza A viruses. RNA21:36–47 [CrossRef][PubMed]
    [Google Scholar]
  12. Cristina J., Moreno P., Moratorio G., Musto H.. 2015; Genome-wide analysis of codon usage bias in Ebolavirus. Virus Res196:87–93 [CrossRef][PubMed]
    [Google Scholar]
  13. Davis M., Sagan S. M., Pezacki J. P., Evans D. J., Simmonds P.. 2008; Bioinformatic and physical characterizations of genome-scale ordered RNA structure in mammalian RNA viruses. J Virol82:11824–11836 [CrossRef][PubMed]
    [Google Scholar]
  14. de Melo Freire C. C., de Lima Neto A. I. D. F., Sall A. A., de Andrade Zanotto M.. 2015; Spread of the pandemic Zika virus lineage is associated with NS1 codon usage adaptation in humans. bioRxiv doi: 10.1101/032839
    [Google Scholar]
  15. Grigoriev A.. 1998; Analyzing genomes with cumulative skew diagrams. Nucleic Acids Res26:2286–2290 [CrossRef][PubMed]
    [Google Scholar]
  16. Gu W., Zhou T., Ma J., Sun X., Lu Z.. 2004; Analysis of synonymous codon usage in SARS Coronavirus and other viruses in the Nidovirales. Virus Res101:155–161 [CrossRef][PubMed]
    [Google Scholar]
  17. Herzner A. M., Hagmann C. A., Goldeck M., Wolter S., Kübler K., Wittmann S., Gramberg T., Andreeva L., Hopfner K. P. et al. 2015; Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat Immunol16:1025–1033 [CrossRef][PubMed]
    [Google Scholar]
  18. Hu J. S., Wang Q. Q., Zhang J., Chen H. T., Xu Z. W., Zhu L., Ding Y. Z., Ma L. N., Xu K. et al. 2011; The characteristic of codon usage pattern and its evolution of hepatitis C virus. Infect Genet Evol11:2098–2102 [CrossRef][PubMed]
    [Google Scholar]
  19. Jenkins G. M., Pagel M., Gould E. A., de A. Z. P. M., Holmes E. C.. 2001; Evolution of base composition and codon usage bias in the genus Flavivirus. J Mol Evol52:383–390 [CrossRef][PubMed]
    [Google Scholar]
  20. Jenkins G. M., Holmes E. C.. 2003; The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res92:1–7 [CrossRef][PubMed]
    [Google Scholar]
  21. Karlin S., Doerfler W., Cardon L. R.. 1994; Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses?. J Virol68:2889–2897[PubMed]
    [Google Scholar]
  22. Kutluay S. B., Zang T., Blanco-Melo D., Powell C., Jannain D., Errando M., Bieniasz P. D.. 2014; Global changes in the RNA binding specificity of HIV-1 gag regulate virion genesis. Cell159:1096–1109 [CrossRef][PubMed]
    [Google Scholar]
  23. Kypr J., Mrázek J.. 1987; Unusual codon usage of HIV. Nature327:20 [CrossRef][PubMed]
    [Google Scholar]
  24. Lara-Ramirez E. E., Salazar M. I, Lopez-Lopez Mde J., Salas-Benito J. S., Sanchez-Varela A., Guo X.. 2014; Large-scale genomic analysis of codon usage in dengue virus and evaluation of its phylogenetic dependence. Biomed Res Int2014:851425[CrossRef]
    [Google Scholar]
  25. Leifer I., Ruggli N., Blome S.. 2013; Approaches to define the viral genetic basis of classical swine fever virus virulence. Virology438:51–55 [CrossRef][PubMed]
    [Google Scholar]
  26. Li M., Kao E., Gao X., Sandig H., Limmer K., Pavon-Eternod M., Jones T. E., Landry S., Pan T. et al. 2012; Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature491:125–128 [CrossRef][PubMed]
    [Google Scholar]
  27. Mauger D. M., Golden M., Yamane D., Williford S., Lemon S. M., Martin D. P., Weeks K. M.. 2015; Functionally conserved architecture of hepatitis C virus RNA genomes. Proc Natl Acad Sci U S A112:3692–3697 [CrossRef][PubMed]
    [Google Scholar]
  28. Moeller A., Kirchdoerfer R. N., Potter C. S., Carragher B., Wilson I. A.. 2012; Organization of the influenza virus replication machinery. Science338:1631–1634 [CrossRef][PubMed]
    [Google Scholar]
  29. Moratorio G., Iriarte A., Moreno P., Musto H., Cristina J.. 2013; A detailed comparative analysis on the overall codon usage patterns in West Nile virus. Infect Genet Evol14:396–400 [CrossRef]
    [Google Scholar]
  30. Moya A., Holmes E. C., González-Candelas F.. 2004; The population genetics and evolutionary epidemiology of RNA viruses. Nat Rev Microbiol2:279–288 [CrossRef][PubMed]
    [Google Scholar]
  31. Musto H., Cruveiller S., D'Onofrio G., Romero H., Bernardi G.. 2001; Translational selection on codon usage in Xenopus laevis. Mol Biol Evol18:1703–1707 [CrossRef][PubMed]
    [Google Scholar]
  32. Pavesi A.. 2015; Different patterns of codon usage in the overlapping polymerase and surface genes of hepatitis B virus suggest a de novo origin by modular evolution. J Gen Virol96:3577–3586 [CrossRef][PubMed]
    [Google Scholar]
  33. Pyrc K., Jebbink M. F., Berkhout B., van der Hoek L.. 2004; Genome structure and transcriptional regulation of human coronavirus NL63. Virol J1:7 [CrossRef][PubMed]
    [Google Scholar]
  34. Rabadan R., Levine A. J., Robins H.. 2006; Comparison of avian and human influenza A viruses reveals a mutational bias on the viral genomes. J Virol80:11887–11891 [CrossRef][PubMed]
    [Google Scholar]
  35. Rima B. K.. 2015; Nucleotide sequence conservation in paramyxoviruses; the concept of codon constellation. J Gen Virol96:939–955 [CrossRef][PubMed]
    [Google Scholar]
  36. Rothberg P. G., Wimmer E.. 1981; Mononucleotide and dinucleotide frequencies, and codon usage in poliovirion RNA. Nucleic Acids Res9:6221–6229 [CrossRef][PubMed]
    [Google Scholar]
  37. Santos M. A., Moura G., Massey S. E., Tuite M. F.. 2004; Driving change: the evolution of alternative genetic codes. Trends Genet20:95–102 [CrossRef][PubMed]
    [Google Scholar]
  38. Sau K., Sau S., Mandal S. C., Ghosh T. C.. 2005; Factors influencing the synonymous codon and amino acid usage bias in AT-rich Pseudomonas aeruginosa phage PhiKZ. Acta Biochim Biophys Sin37:625–633 [CrossRef][PubMed]
    [Google Scholar]
  39. Sau K., Gupta S. K., Sau S., Mandal S. C., Ghosh T. C.. 2007; Studies on synonymous codon and amino acid usage biases in the broad-host range bacteriophage KVP40. J Microbiol45:58–63[PubMed]
    [Google Scholar]
  40. Schubert A. M., Putonti C.. 2010; Evolution of the sequence composition of Flaviviruses. Infect Genet Evol10:129–136 [CrossRef][PubMed]
    [Google Scholar]
  41. Sharp P. M., Stenico M., Peden J. F., Lloyd A. T.. 1993; Codon usage: mutational bias, translational selection, or both?. Biochem Soc Trans21:835–841 [CrossRef][PubMed]
    [Google Scholar]
  42. Shi S. L., Jiang Y. R., Liu Y. Q., Xia R. X., Qin L.. 2013; Selective pressure dominates the synonymous codon usage in parvoviridae. Virus Genes46:10–19 [CrossRef][PubMed]
    [Google Scholar]
  43. Shin Y. C., Bischof G. F., Lauer W. A., Desrosiers R. C.. 2015; Importance of codon usage for the temporal regulation of viral gene expression. Proc Natl Acad Sci U S A112:14030–14035 [CrossRef][PubMed]
    [Google Scholar]
  44. Simmonds P.. 2006; Recombination and selection in the evolution of picornaviruses and other Mammalian positive-stranded RNA viruses. J Virol80:11124–11140 [CrossRef][PubMed]
    [Google Scholar]
  45. Su M. W., Lin H. M., Yuan H. S., Chu W. C.. 2009; Categorizing host-dependent RNA viruses by principal component analysis of their codon usage preferences. J Comput Biol16:1539–1547 [CrossRef][PubMed]
    [Google Scholar]
  46. Sükösd Z., Andersen E. S., Seemann S. E., Jensen M. K., Hansen M., Gorodkin J., Kjems J.. 2015; Full-length RNA structure prediction of the HIV-1 genome reveals a conserved core domain. Nucleic Acids Res43:10168–10179 [CrossRef][PubMed]
    [Google Scholar]
  47. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  48. Tao P., Dai L., Luo M., Tang F., Tien P., Pan Z.. 2009; Analysis of synonymous codon usage in classical swine fever virus. Virus Genes38:104–112 [CrossRef][PubMed]
    [Google Scholar]
  49. Vabret N., Bailly-Bechet M., Najburg V., Müller-Trutwin M., Verrier B., Tangy F.. 2012; The biased nucleotide composition of HIV-1 triggers type I interferon response and correlates with subtype D increased pathogenicity. PLoS One7:e33502 [CrossRef][PubMed]
    [Google Scholar]
  50. van der Kuyl A. C., Berkhout B.. 2012; The biased nucleotide composition of the HIV genome: a constant factor in a highly variable virus. Retrovirology9:92 [CrossRef][PubMed]
    [Google Scholar]
  51. van Hemert F., van der Kuyl A. C., Berkhout B.. 2014; On the nucleotide composition and structure of retroviral RNA genomes. Virus Res193:16–23 [CrossRef][PubMed]
    [Google Scholar]
  52. van Hemert F., Berkhout B.. 2016; Nucleotide composition of the Zika virus RNA genome and its codon usage. Virol J13:95 [CrossRef][PubMed]
    [Google Scholar]
  53. van Hemert F. J., Berkhout B.. 1995; The tendency of lentiviral open reading frames to become A-rich: constraints imposed by viral genome organization and cellular tRNA availability. J Mol Evol41:132–140 [CrossRef][PubMed]
    [Google Scholar]
  54. van Hemert F. J., Berkhout B., Lukashov V. V.. 2007; Host-related nucleotide composition and codon usage as driving forces in the recent evolution of the Astroviridae. Virology361:447–454 [CrossRef][PubMed]
    [Google Scholar]
  55. van Hemert F. J., van der Kuyl A. C., Berkhout B.. 2013; The A-nucleotide preference of HIV-1 in the context of its structured RNA genome. RNA Biol10:211–215 [CrossRef][PubMed]
    [Google Scholar]
  56. van Weringh A., Ragonnet-Cronin M., Pranckeviciene E., Pavon-Eternod M., Kleiman L., Xia X.. 2011; HIV-1 modulates the tRNA pool to improve translation efficiency. Mol Biol Evol28:1827–1834 [CrossRef][PubMed]
    [Google Scholar]
  57. Wang M., Zhang J., Zhou J. H., Chen H. T., Ma L. N., Ding Y. Z., Liu W. Q., Liu Y. S.. 2011; Analysis of codon usage in bovine viral diarrhea virus. Arch Virol156:153–160 [CrossRef][PubMed]
    [Google Scholar]
  58. Watts J. M., Dang K. K., Gorelick R. J., Leonard C. W., Bess J. W., Swanstrom R., Burch C. L., Weeks K. M.. 2009; Architecture and secondary structure of an entire HIV-1 RNA genome. Nature460:711–716 [CrossRef][PubMed]
    [Google Scholar]
  59. Wilusz J. E.. 2015; Controlling translation via modulation of tRNA levels. Wiley Interdiscip Rev RNA6:453–470 [CrossRef][PubMed]
    [Google Scholar]
  60. Wong E. H., Smith D. K., Rabadan R., Peiris M., Poon L. L.. 2010; Codon usage bias and the evolution of influenza A viruses. Codon usage biases of influenza virus. BMC Evol Biol10:253 [CrossRef][PubMed]
    [Google Scholar]
  61. Wright F.. 1990; The ‘effective number of codons' used in a gene. Gene87:23–29 [CrossRef][PubMed]
    [Google Scholar]
  62. Young M., Bolduc B., Shaughnessy D. P., Roberto F. F., Wolf Y. I., Koonin E. V.. 2013; Reply to ‘codon usage frequency of RNA virus genomes from high-temperature acidic-environment metagenomes’. J Virol87:1920–1921 [CrossRef][PubMed]
    [Google Scholar]
  63. Zhou J. H., Zhang J., Sun D. J., Ma Q., Chen H. T., Ma L. N., Ding Y. Z., Liu Y. S.. 2013; The distribution of synonymous codon choice in the translation initiation region of dengue virus. PLoS One8:e77239 [CrossRef][PubMed]
    [Google Scholar]
  64. Zhou T., Gu W., Ma J., Sun X., Lu Z.. 2005; Analysis of synonymous codon usage in H5N1 virus and other influenza A viruses. Biosystems81:77–86 [CrossRef][PubMed]
    [Google Scholar]
  65. Zhou Y., Chen X., Ushijima H., Frey T. K.. 2012; Analysis of base and codon usage by rubella virus. Arch Virol157:889–899 [CrossRef][PubMed]
    [Google Scholar]
  66. Zuker M.. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res31:3406–3415 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000579
Loading
/content/journal/jgv/10.1099/jgv.0.000579
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error