Roles of nuclear trafficking in infection by cytoplasmic negative-strand RNA viruses: paramyxoviruses and beyond Free

Abstract

Genome replication and virion production by most negative-sense RNA viruses (NSVs) occurs exclusively in the cytoplasm, but many NSV-expressed proteins undergo active nucleocytoplasmic trafficking via signals that exploit cellular nuclear transport pathways. Nuclear trafficking has been reported both for NSV accessory proteins (including isoforms of the rabies virus phosphoprotein, and V, W and C proteins of paramyxoviruses) and for structural proteins. Trafficking of the former is thought to enable accessory functions in viral modulation of antiviral responses including the type I IFN system, but the intranuclear roles of structural proteins such as nucleocapsid and matrix proteins, which have critical roles in extranuclear replication and viral assembly, are less clear. Nevertheless, nuclear trafficking of matrix protein has been reported to be critical for efficient production of Nipah virus and Respiratory syncytial virus, and nuclear localization of nucleocapsid protein of several morbilliviruses has been linked to mechanisms of immune evasion. Together, these data point to the nucleus as a significant host interface for viral proteins during infection by NSVs with otherwise cytoplasmic life cycles. Importantly, several lines of evidence now suggest that nuclear trafficking of these proteins may be critical to pathogenesis and thus could provide new targets for vaccine development and antiviral therapies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000575
2016-10-13
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/10/2463.html?itemId=/content/journal/jgv/10.1099/jgv.0.000575&mimeType=html&fmt=ahah

References

  1. Alvisi G., Jans D. A., Guo J., Pinna L. A., Ripalti A. 2005; A protein kinase CK2 site flanking the nuclear targeting signal enhances nuclear transport of human cytomegalovirus ppUL44. Traffic 6:1002–1013 [View Article][PubMed]
    [Google Scholar]
  2. Amorim M. J., Digard P. 2006; Influenza A virus and the cell nucleus. Vaccine 24:6651–6655 [View Article][PubMed]
    [Google Scholar]
  3. Andrejeva J., Childs K. S., Young D. F., Carlos T. S., Stock N., Goodbourn S., Randall R. E. 2004; The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, MDA-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci U S A 101:17264–17269 [View Article][PubMed]
    [Google Scholar]
  4. Audsley M. D., Moseley G. W. 2013; Paramyxovirus evasion of innate immunity: diverse strategies for common targets. World J Virol 2:57–70 [View Article][PubMed]
    [Google Scholar]
  5. Audsley M. D., Marsh G. A., Lieu K. G., Tachedjian M., Joubert D. A., Wang L. F., Jans D. A., Moseley G. W. 2016; The immune evasion function of J and Beilong virus V proteins is distinct from that of other paramyxoviruses, consistent with their inclusion in the proposed genus Jeilongvirus . J Gen Virol 97:581–592 [View Article][PubMed]
    [Google Scholar]
  6. Bankamp B., Horikami S. M., Thompson P. D., Huber M., Billeter M., Moyer S. A. 1996; Domains of the measles virus N protein required for binding to P protein and self-assembly. Virology 216:272–277 [View Article][PubMed]
    [Google Scholar]
  7. Bankamp B., Wilson J., Bellini W. J., Rota P. A. 2005; Identification of naturally occurring amino acid variations that affect the ability of the measles virus C protein to regulate genome replication and transcription. Virology 336:120–129 [View Article][PubMed]
    [Google Scholar]
  8. Bauer A., Neumann S., Karger A., Henning A. K., Maisner A., Lamp B., Dietzel E., Kwasnitschka L., Balkema-Buschmann A. et al. 2014; ANP32B is a nuclear target of henipavirus M proteins. PLoS One 9:e97233 [View Article][PubMed]
    [Google Scholar]
  9. Bayliss R., Littlewood T., Stewart M. 2000; Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking. Cell 102:99–108[PubMed] [CrossRef]
    [Google Scholar]
  10. Beg A. A., Ruben S. M., Scheinman R., Haskill S., Rosen C. A., Baldwin A. S. 1992; I kappa B interacts with the nuclear localization sequences of the subunits of NF-kappa B: a mechanism for cytoplasmic retention. Genes Dev 6:1899–1913[PubMed] [CrossRef]
    [Google Scholar]
  11. Bellini W. J., Englund G., Rozenblatt S., Arnheiter H., Richardson C. D. 1985; Measles virus P gene codes for two proteins. J Virol 53:908–919[PubMed]
    [Google Scholar]
  12. Bernardi R., Scaglioni P. P., Bergmann S., Horn H. F., Vousden K. H., Pandolfi P. P. 2004; PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 6:665–672 [View Article][PubMed]
    [Google Scholar]
  13. Bischoff F. R., Krebber H., Smirnova E., Dong W., Ponstingl H. 1995; Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1. EMBO J 14:705–715[PubMed]
    [Google Scholar]
  14. Blondel D., Regad T., Poisson N., Pavie B., Harper F., Pandolfi P. P., De Thé H., Chelbi-Alix M. K. 2002; Rabies virus P and small P products interact directly with PML and reorganize PML nuclear bodies. Oncogene 21:7957–7970 [View Article][PubMed]
    [Google Scholar]
  15. Brice A., Moseley G. 2013; Viral interactions with microtubules: orchestrators of host cell biology?. Future Virol 8:229–243 [View Article]
    [Google Scholar]
  16. Briese T., de la Torre J. C., Lewis A., Ludwig H., Lipkin W. 1992; Borna disease virus, a negative-strand RNA virus, transcribes in the nucleus of infected cells. Proc Natl Acad Sci U S A 89:11486–11489[PubMed] [CrossRef]
    [Google Scholar]
  17. Brzózka K., Finke S., Conzelmann K. K. 2005; Identification of the rabies virus alpha/beta interferon antagonist: phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3. J Virol 79:7673–7681 [View Article][PubMed]
    [Google Scholar]
  18. Caignard G., Guerbois M., Labernardière J. L., Jacob Y., Jones L. M., Wild F., Tangy F., Vidalain P. O. Infectious Mapping Project I-MAP 2007; Measles virus V protein blocks Jak1-mediated phosphorylation of STAT1 to escape IFN-alpha/beta signaling. Virology 368:351–362 [View Article][PubMed]
    [Google Scholar]
  19. Caignard G., Lucas-Hourani M., Dhondt K. P., Labernardière J. L., Petit T., Jacob Y., Horvat B., Tangy F., Vidalain P. O. 2013; The V protein of Tioman virus is incapable of blocking type I interferon signaling in human cells. PLoS One 8:e53881 [View Article][PubMed]
    [Google Scholar]
  20. Calado A., Treichel N., Müller E. C., Otto A., Kutay U. 2002; Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA. EMBO J 21:6216–6224[PubMed] [CrossRef]
    [Google Scholar]
  21. Chelsky D., Ralph R., Jonak G. 1989; Sequence requirements for synthetic peptide-mediated translocation to the nucleus. Mol Cell Biol 9:2487–2492 [View Article][PubMed]
    [Google Scholar]
  22. Chenik M., Chebli K., Blondel D. 1995; Translation initiation at alternate in-frame AUG codons in the rabies virus phosphoprotein mRNA is mediated by a ribosomal leaky scanning mechanism. J Virol 69:707–712[PubMed]
    [Google Scholar]
  23. Childs K., Stock N., Ross C., Andrejeva J., Hilton L., Skinner M., Randall R., Goodbourn S. 2007; Mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology 359:190–200 [View Article][PubMed]
    [Google Scholar]
  24. Childs K., Randall R., Goodbourn S. 2012; Paramyxovirus V proteins interact with the RNA helicase LGP2 to inhibit RIG-I-dependent interferon induction. J Virol 86:3411–3421 [View Article][PubMed]
    [Google Scholar]
  25. Chinnakannan S. K., Holzer B., Bernardo B. S., Nanda S. K., Baron M. D. 2014; Different functions of the common P/V/W and V-specific domains of rinderpest virus V protein in blocking IFN signalling. J Gen Virol 95:44–51 [View Article][PubMed]
    [Google Scholar]
  26. Chui L. W., Vainionpää R., Marusyk R., Salmi A., Norrby E. 1986; Nuclear accumulation of measles virus nucleoprotein associated with a temperature-sensitive mutant. J Gen Virol 67:2153–2161 [View Article][PubMed]
    [Google Scholar]
  27. Ciancanelli M. J., Basler C. F. 2006; Mutation of YMYL in the Nipah virus matrix protein abrogates budding and alters subcellular localization. J Virol 80:12070–12078 [View Article][PubMed]
    [Google Scholar]
  28. Ciancanelli M. J., Volchkova V. A., Shaw M. L., Volchkov V. E., Basler C. F. 2009; Nipah virus sequesters inactive STAT1 in the nucleus via a P gene-encoded mechanism. J Virol 83:7828–7841 [View Article][PubMed]
    [Google Scholar]
  29. Coleman N. A., Peeples M. E. 1993; The matrix protein of Newcastle disease virus localizes to the nucleus via a bipartite nuclear localization signal. Virology 195:596–607 [View Article][PubMed]
    [Google Scholar]
  30. Deffrasnes C., Marsh G. A., Foo C. H., Rootes C. L., Gould C. M., Grusovin J., Monaghan P., Lo M. K., Tompkins S. M. et al. 2016; Genome-wide siRNA screening at biosafety level 4 reveals a crucial role for fibrillarin in henipavirus infection. PLoS Pathog 12:e1005478 [View Article][PubMed]
    [Google Scholar]
  31. Didcock L., Young D. F., Goodbourn S., Randall R. E. 1999; The V protein of simian virus 5 inhibits interferon signalling by targeting STAT1 for proteasome-mediated degradation. J Virol 73:9928–9933[PubMed]
    [Google Scholar]
  32. Duan Z., Song Q., Wang Y., He L., Chen J., Zhu Y., Hu S., Liu X. 2013; Characterization of signal sequences determining the nuclear export of Newcastle disease virus matrix protein. Arch Virol 158:2589–2595 [View Article][PubMed]
    [Google Scholar]
  33. Fagotto F., Glück U., Gumbiner B. M. 1998; Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of beta-catenin. Curr Biol 8:181–190[PubMed] [CrossRef]
    [Google Scholar]
  34. Ferran M. C., Lucas-Lenard J. M. 1997; The vesicular stomatitis virus matrix protein inhibits transcription from the human beta interferon promoter. J Virol 71:371–377[PubMed]
    [Google Scholar]
  35. Follett E. A., Pringle C. R., Wunner W. H., Skehel J. J. 1974; Virus replication in enucleate cells: vesicular stomatitis virus and influenza virus. J Virol 13:394–399[PubMed]
    [Google Scholar]
  36. Follett E. A., Pringle C. R., Pennington T. H. 1976; Events following the infections of enucleate cells with measles virus. J Gen Virol 32:163–175 [View Article][PubMed]
    [Google Scholar]
  37. Fooks A. R., Banyard A. C., Horton D. L., Johnson N., McElhinney L. M., Jackson A. C. 2014; Current status of rabies and prospects for elimination. Lancet 384:1389–1399 [View Article][PubMed]
    [Google Scholar]
  38. Fulcher A. J., Roth D. M., Fatima S., Alvisi G., Jans D. A. 2010; The BRCA-1 binding protein BRAP2 is a novel, negative regulator of nuclear import of viral proteins, dependent on phosphorylation flanking the nuclear localization signal. FASEB J 24:1454–1466 [View Article][PubMed]
    [Google Scholar]
  39. Garcin D., Marq J. B., Strahle L., le Mercier P., Kolakofsky D. 2002; All four Sendai Virus C proteins bind Stat1, but only the larger forms also induce its mono-ubiquitination and degradation. Virology 295:256–265 [View Article][PubMed]
    [Google Scholar]
  40. Ghildyal R., Mills J., Murray M., Vardaxis N., Meanger J. 2002; Respiratory syncytial virus matrix protein associates with nucleocapsids in infected cells. J Gen Virol 83:753–757 [View Article][PubMed]
    [Google Scholar]
  41. Ghildyal R., Baulch-Brown C., Mills J., Meanger J. 2003; The matrix protein of human respiratory syncytial virus localises to the nucleus of infected cells and inhibits transcription. Arch Virol 148:1419–1429 [View Article][PubMed]
    [Google Scholar]
  42. Ghildyal R., Ho A., Wagstaff K. M., Dias M. M., Barton C. L., Jans P., Bardin P., Jans D. A. 2005; Nuclear import of the respiratory syncytial virus matrix protein is mediated by importin beta1 independent of importin alpha. Biochemistry 44:12887–12895 [View Article][PubMed]
    [Google Scholar]
  43. Ghildyal R., Ho A., Dias M., Soegiyono L., Bardin P. G., Tran K. C., Teng M. N., Jans D. A. 2009; The respiratory syncytial virus matrix protein possesses a Crm1-mediated nuclear export mechanism. J Virol 83:5353–5362 [View Article][PubMed]
    [Google Scholar]
  44. Glodowski D. R., Petersen J. M., Dahlberg J. E. 2002; Complex nuclear localization signals in the matrix protein of vesicular stomatitis virus. J Biol Chem 277:46864–46870 [View Article][PubMed]
    [Google Scholar]
  45. Goodbourn S., Randall R. E. 2009; The regulation of type I interferon production by paramyxoviruses. J Interferon Cytokine Res 29:539–547 [View Article][PubMed]
    [Google Scholar]
  46. Grogan C. C., Moyer S. A. 2001; Sendai virus wild-type and mutant C proteins show a direct correlation between L polymerase binding and inhibition of viral RNA synthesis. Virology 288:96–108 [View Article][PubMed]
    [Google Scholar]
  47. Hagmaier K., Stock N., Precious B., Childs K., Wang L. F., Goodbourn S., Randall R. E. 2007; Mapuera virus, a rubulavirus that inhibits interferon signalling in a wide variety of mammalian cells without degrading STATs. J Gen Virol 88:956–966 [View Article][PubMed]
    [Google Scholar]
  48. Hausmann S., Garcin D., Delenda C., Kolakofsky D. 1999; The versatility of paramyxovirus RNA polymerase stuttering. J Virol 73:5568–5576[PubMed]
    [Google Scholar]
  49. Her L. S., Lund E., Dahlberg J. E. 1997; Inhibition of Ran guanosine triphosphatase-dependent nuclear transport by the matrix protein of vesicular stomatitis virus. Science 276:1845–1848[PubMed] [CrossRef]
    [Google Scholar]
  50. Holaska J. M., Black B. E., Love D. C., Hanover J. A., Leszyk J., Paschal B. M. 2001; Calreticulin Is a receptor for nuclear export. J Cell Biol 152:127–140[PubMed] [CrossRef]
    [Google Scholar]
  51. Horikami S. M., Hector R. E., Smallwood S., Moyer S. A. 1997; The Sendai virus C protein binds the L polymerase protein to inhibit viral RNA synthesis. Virology 235:261–270 [View Article][PubMed]
    [Google Scholar]
  52. Hübner S., Xiao C. Y., Jans D. A. 1997; The protein kinase CK2 site (Ser111/112) enhances recognition of the simian virus 40 large T-antigen nuclear localization sequence by importin. J Biol Chem 272:17191–17195[PubMed] [CrossRef]
    [Google Scholar]
  53. Irie T., Nagata N., Yoshida T., Sakaguchi T. 2008; Recruitment of Alix/AIP1 to the plasma membrane by Sendai virus C protein facilitates budding of virus-like particles. Virology 371:108–120 [View Article][PubMed]
    [Google Scholar]
  54. Irie T., Kiyotani K., Igarashi T., Yoshida A., Sakaguchi T. 2012; Inhibition of interferon regulatory factor 3 activation by paramyxovirus V protein. J Virol 86:7136–7145 [View Article][PubMed]
    [Google Scholar]
  55. Irie T., Yoshida A., Sakaguchi T. 2013; Clustered basic amino acids of the small sendai virus C protein Y1 are critical to its RAN GTPase-mediated nuclear localization. PLoS One 8:e73740 [View Article][PubMed]
    [Google Scholar]
  56. Ito M., Takeuchi T., Nishio M., Kawano M., Komada H., Tsurudome M., Ito Y. 2004; Early stage of establishment of persistent Sendai virus infection: unstable dynamic phase and then selection of viruses which are tightly cell associated, temperature sensitive, and capable of establishing persistent infection. J Virol 78:11939–11951 [View Article][PubMed]
    [Google Scholar]
  57. Ito M., Iwasaki M., Takeda M., Nakamura T., Yanagi Y., Ohno S. 2013; Measles virus nonstructural C protein modulates viral RNA polymerase activity by interacting with host protein SHCBP1. J Virol 87:9633–9642 [View Article][PubMed]
    [Google Scholar]
  58. Ito N., Moseley G. W., Blondel D., Shimizu K., Rowe C. L., Ito Y., Masatani T., Nakagawa K., Jans D. A., Sugiyama M. 2010; Role of interferon antagonist activity of rabies virus phosphoprotein in viral pathogenicity. J Virol 84:6699–6710 [View Article][PubMed]
    [Google Scholar]
  59. Ito N., Moseley G. W., Sugiyama M. 2016; The importance of immune evasion in the pathogenesis of rabies virus. J Vet Med Sci 78:1089–1098 [View Article][PubMed]
    [Google Scholar]
  60. Iwasaki M., Takeda M., Shirogane Y., Nakatsu Y., Nakamura T., Yanagi Y. 2009; The matrix protein of measles virus regulates viral RNA synthesis and assembly by interacting with the nucleocapsid protein. J Virol 83:10374–10383 [View Article][PubMed]
    [Google Scholar]
  61. Jacob Y., Badrane H., Ceccaldi P. E., Tordo N. 2000; Cytoplasmic dynein LC8 interacts with lyssavirus phosphoprotein. J Virol 74:10217–10222[PubMed] [CrossRef]
    [Google Scholar]
  62. Joubert D. A., Blasdell K. R., Audsley M. D., Trinidad L., Monaghan P., Dave K. A., Lieu K. G., Amos-Ritchie R., Jans D. A. et al. 2014; Bovine ephemeral fever rhabdovirus α1 protein has viroporin-like properties and binds importin β1 and importin 7. J Virol 88:1591–1603 [View Article][PubMed]
    [Google Scholar]
  63. Jul-Larsen A., Grudic A., Bjerkvig R., Bøe S. O. 2010; Subcellular distribution of nuclear import-defective isoforms of the promyelocytic leukemia protein. BMC Mol Biol 11:89 [View Article][PubMed]
    [Google Scholar]
  64. Kalderon D., Roberts B. L., Richardson W. D., Smith A. E. 1984; A short amino acid sequence able to specify nuclear location. Cell 39:499–509[PubMed] [CrossRef]
    [Google Scholar]
  65. Kaur G., Jans D. A. 2011; Dual nuclear import mechanisms of sex determining factor SRY: intracellular Ca2+ as a switch. FASEB J 25:665–675 [View Article][PubMed]
    [Google Scholar]
  66. Kaur G., Lieu K. G., Jans D. A. 2013; 70-kDa heat shock cognate protein hsc70 mediates calmodulin-dependent nuclear import of the sex-determining factor SRY. J Biol Chem 288:4148–4157 [View Article][PubMed]
    [Google Scholar]
  67. Kelley J. B., Talley A. M., Spencer A., Gioeli D., Paschal B. M. 2010; Karyopherin alpha7 (KPNA7), a divergent member of the importin alpha family of nuclear import receptors. BMC Cell Biol 11:63 [View Article][PubMed]
    [Google Scholar]
  68. Kitamura R., Sekimoto T., Ito S., Harada S., Yamagata H., Masai H., Yoneda Y., Yanagi K. 2006; Nuclear import of Epstein-Barr virus nuclear antigen 1 mediated by NPI-1 (Importin alpha5) is up- and down-regulated by phosphorylation of the nuclear localization signal for which Lys379 and Arg380 are essential. J Virol 80:1979–1991 [View Article][PubMed]
    [Google Scholar]
  69. Kubota T., Yokosawa N., Yokota S., Fujii N. 2001; C terminal CYS-RICH region of mumps virus structural V protein correlates with block of interferon alpha and gamma signal transduction pathway through decrease of STAT 1-alpha. Biochem Biophys Res Commun 283:255–259 [View Article][PubMed]
    [Google Scholar]
  70. Kubota T., Yokosawa N., Yokota S., Fujii N. 2002; Association of mumps virus V protein with RACK1 results in dissociation of STAT-1 from the alpha interferon receptor complex. J Virol 76:12676–12682[PubMed] [CrossRef]
    [Google Scholar]
  71. Kudo N., Wolff B., Sekimoto T., Schreiner E. P., Yoneda Y., Yanagida M., Horinouchi S., Yoshida M. 1998; Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp Cell Res 242:540–547 [View Article][PubMed]
    [Google Scholar]
  72. la Cour T., Kiemer L., Mølgaard A., Gupta R., Skriver K., Brunak S. 2004; Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel 17:527–536 [View Article][PubMed]
    [Google Scholar]
  73. Lamb R. A., Parks G. D. 2007; Paramyxoviridae: The viruses and their replication. In Fields Virology, 5th edn. , Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  74. Lieu K. G., Brice A., Wiltzer L., Hirst B., Jans D. A., Blondel D., Moseley G. W. 2013; The rabies virus interferon antagonist P protein interacts with activated STAT3 and inhibits Gp130 receptor signaling. J Virol 87:8261–8265 [View Article][PubMed]
    [Google Scholar]
  75. Lieu K. G., Shim E. H., Wang J., Lokareddy R. K., Tao T., Cingolani G., Zambetti G. P., Jans D. A. 2014; The p53-induced factor Ei24 inhibits nuclear import through an importin β-binding-like domain. J Cell Biol 205:301–312 [View Article][PubMed]
    [Google Scholar]
  76. Lim R. Y., Aebi U., Fahrenkrog B. 2008; Towards reconciling structure and function in the nuclear pore complex. Histochem Cell Biol 129:105–116 [View Article][PubMed]
    [Google Scholar]
  77. Liston P., DiFlumeri C., Briedis D. J. 1995; Protein interactions entered into by the measles virus P, V, and C proteins. Virus Res 38:241–259[PubMed] [CrossRef]
    [Google Scholar]
  78. Lo M. K., Miller D., Aljofan M., Mungall B. A., Rollin P. E., Bellini W. J., Rota P. A. 2010; Characterization of the antiviral and inflammatory responses against Nipah virus in endothelial cells and neurons. Virology 404:78–88 [View Article][PubMed]
    [Google Scholar]
  79. Lu L. L., Puri M., Horvath C. M., Sen G. C. 2008; Select paramyxoviral V proteins inhibit IRF3 activation by acting as alternative substrates for inhibitor of kappaB kinase epsilon (IKKe)/TBK1. J Biol Chem 283:14269–14276 [View Article][PubMed]
    [Google Scholar]
  80. Ludlow L. E., Lo M. K., Rodriguez J. J., Rota P. A., Horvath C. M. 2008; Henipavirus V protein association with Polo-like kinase reveals functional overlap with STAT1 binding and interferon evasion. J Virol 82:6259–6271 [View Article][PubMed]
    [Google Scholar]
  81. Lyles D. S., Puddington L., McCreedy B. J. 1988; Vesicular stomatitis virus M protein in the nuclei of infected cells. J Virol 62:4387–4392[PubMed]
    [Google Scholar]
  82. Marchenko N. D., Hanel W., Li D., Becker K., Reich N., Moll U. M. 2010; Stress-mediated nuclear stabilization of p53 is regulated by ubiquitination and importin-alpha3 binding. Cell Death Differ 17:255–267 [View Article][PubMed]
    [Google Scholar]
  83. Masatani T., Ozawa M., Yamada K., Ito N., Horie M., Matsuu A., Okuya K., Tsukiyama-Kohara K., Sugiyama M., Nishizono A. 2016; Contribution of the interaction between the rabies virus P protein and I-kappa B kinase ϵ to the inhibition of type I IFN induction signalling. J Gen Virol 97:316–326 [View Article][PubMed]
    [Google Scholar]
  84. Mashtalir N., Daou S., Barbour H., Sen N. N., Gagnon J., Hammond-Martel I., Dar H. H., Therrien M., Affar el B. 2014; Autodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase UBE2O. Mol Cell 54:392–406 [View Article][PubMed]
    [Google Scholar]
  85. Mateo M., Reid S. P., Leung L. W., Basler C. F., Volchkov V. E. 2010; Ebolavirus VP24 binding to karyopherins is required for inhibition of interferon signaling. J Virol 84:1169–1175 [View Article][PubMed]
    [Google Scholar]
  86. Medzhitov R. 2007; Recognition of microorganisms and activation of the immune response. Nature 449:819–826 [View Article][PubMed]
    [Google Scholar]
  87. Monaghan P., Green D., Pallister J., Klein R., White J., Williams C., McMillan P., Tilley L., Lampe M. et al. 2014; Detailed morphological characterisation of Hendra virus infection of different cell types using super-resolution and conventional imaging. Virol J 11:200 [View Article][PubMed]
    [Google Scholar]
  88. Moroianu J., Blobel G., Radu A. 1996; Nuclear protein import: Ran-GTP dissociates the karyopherin alphabeta heterodimer by displacing alpha from an overlapping binding site on beta. Proc Natl Acad Sci U S A 93:7059–7062[PubMed] [CrossRef]
    [Google Scholar]
  89. Mosammaparast N., Pemberton L. F. 2004; Karyopherins: from nuclear-transport mediators to nuclear-function regulators. Trends Cell Biol 14:547–556 [View Article][PubMed]
    [Google Scholar]
  90. Moseley G. W., Filmer R. P., DeJesus M. A., Jans D. A. 2007a; Nucleocytoplasmic distribution of rabies virus P-protein is regulated by phosphorylation adjacent to C-terminal nuclear import and export signals. Biochemistry 46:12053–12061 [CrossRef]
    [Google Scholar]
  91. Moseley G. W., Roth D. M., DeJesus M. A., Leyton D. L., Filmer R. P., Pouton C. W., Jans D. A. 2007b; Dynein light chain association sequences can facilitate nuclear protein import. Mol Biol Cell 18:3204–3213 [CrossRef]
    [Google Scholar]
  92. Moseley G. W., Lahaye X., Roth D. M., Oksayan S., Filmer R. P., Rowe C. L., Blondel D., Jans D. A. 2009; Dual modes of rabies P-protein association with microtubules: a novel strategy to suppress the antiviral response. J Cell Sci 122:3652–3662 [View Article][PubMed]
    [Google Scholar]
  93. Nakai M., Imagawa D. T. 1969; Electron microscopy of measles virus replication. J Virol 3:187–197[PubMed]
    [Google Scholar]
  94. Nanda S. K., Baron M. D. 2006; Rinderpest virus blocks type I and type II interferon action: role of structural and nonstructural proteins. J Virol 80:7555–7568 [View Article][PubMed]
    [Google Scholar]
  95. Nath S. T., Nayak D. P. 1990; Function of two discrete regions is required for nuclear localization of polymerase basic protein 1 of A/WSN/33 influenza virus (H1 N1). Mol Cell Biol 10:4139–4145[PubMed] [CrossRef]
    [Google Scholar]
  96. Nishie T., Nagata K., Takeuchi K. 2007; The C protein of wild-type measles virus has the ability to shuttle between the nucleus and the cytoplasm. Microbes Infect 9:344–354 [View Article][PubMed]
    [Google Scholar]
  97. Nishio M., Tsurudome M., Ito M., Kawano M., Kusagawa S., Komada H., Ito Y. 1999; Isolation of monoclonal antibodies directed against the V protein of human parainfluenza virus type 2 and localization of the V protein in virus-infected cells. Med Microbiol Immunol 188:79–82[PubMed] [CrossRef]
    [Google Scholar]
  98. Nishio M., Tsurudome M., Ito M., Kawano M., Komada H., Ito Y. 2003; Characterization of Sendai virus persistently infected L929 cells and Sendai virus pi strain: recombinant Sendai viruses having Mpi protein shows lower cytotoxicity and are incapable of establishing persistent infection. Virology 314:110–124[PubMed] [CrossRef]
    [Google Scholar]
  99. Oglesbee M., Krakowka S. 1993; Cellular stress response induces selective intranuclear trafficking and accumulation of morbillivirus major core protein. Lab Invest 68:109–117[PubMed]
    [Google Scholar]
  100. Oksayan S., Ito N., Moseley G., Blondel D. 2012a; Subcellular trafficking in rhabdovirus infection and immune evasion: a novel target for therapeutics. Infect Disord Drug Targets 12:38–58 [CrossRef]
    [Google Scholar]
  101. Oksayan S., Wiltzer L., Rowe C. L., Blondel D., Jans D. A., Moseley G. W. 2012b; A novel nuclear trafficking module regulates the nucleocytoplasmic localization of the rabies virus interferon antagonist, P protein. J Biol Chem 287:28112–28121 [CrossRef]
    [Google Scholar]
  102. Oksayan S., Nikolic J., David C. T., Blondel D., Jans D. A., Moseley G. W. 2015; Identification of a role for nucleolin in rabies virus infection. J Virol 89:1939–1943 [View Article][PubMed]
    [Google Scholar]
  103. Palmeri D., Malim M. H. 1999; Importin beta can mediate the nuclear import of an arginine-rich nuclear localization signal in the absence of importin alpha. Mol Cell Biol 19:1218–1225[PubMed] [CrossRef]
    [Google Scholar]
  104. Palosaari H., Parisien J. P., Rodriguez J. J., Ulane C. M., Horvath C. M. 2003; STAT protein interference and suppression of cytokine signal transduction by measles virus V protein. J Virol 77:7635–7644[PubMed] [CrossRef]
    [Google Scholar]
  105. Pasdeloup D., Poisson N., Raux H., Gaudin Y., Ruigrok R. W., Blondel D. 2005; Nucleocytoplasmic shuttling of the rabies virus P protein requires a nuclear localization signal and a CRM1-dependent nuclear export signal. Virology 334:284–293 [View Article][PubMed]
    [Google Scholar]
  106. Paterson R. G., Leser G. P., Shaughnessy M. A., Lamb R. A. 1995; The paramyxovirus SV5 V protein binds two atoms of zinc and is a structural component of virions. Virology 208:121–131 [View Article][PubMed]
    [Google Scholar]
  107. Peeples M. E., Wang C., Gupta K. C., Coleman N. 1992; Nuclear entry and nucleolar localization of the Newcastle disease virus (NDV) matrix protein occur early in infection and do not require other NDV proteins. J Virol 66:3263–3269[PubMed]
    [Google Scholar]
  108. Pei Z., Harrison M. S., Schmitt A. P. 2011; Parainfluenza virus 5 M protein interaction with host protein 14-3-3 negatively affects virus particle formation. J Virol 85:2050–2059 [View Article][PubMed]
    [Google Scholar]
  109. Pentecost M., Vashisht A. A., Lester T., Voros T., Beaty S. M., Park A., Wang Y. E., Yun T. E., Freiberg A. N. et al. 2015; Evidence for ubiquitin-regulated nuclear and subnuclear trafficking among Paramyxovirinae matrix proteins. PLoS Pathog 11:e1004739 [View Article][PubMed]
    [Google Scholar]
  110. Perwitasari O., Johnson S., Yan X., Howerth E., Shacham S., Landesman Y., Baloglu E., McCauley D., Tamir S. et al. 2014; Verdinexor, a novel selective inhibitor of nuclear export, reduces influenza a virus replication in vitro and in vivo . J Virol 88:10228–10243 [View Article][PubMed]
    [Google Scholar]
  111. Petersen J. M., Her L. S., Varvel V., Lund E., Dahlberg J. E. 2000; The matrix protein of vesicular stomatitis virus inhibits nucleocytoplasmic transport when it is in the nucleus and associated with nuclear pore complexes. Mol Cell Biol 20:8590–8601[PubMed] [CrossRef]
    [Google Scholar]
  112. Poon I. K., Jans D. A. 2005; Regulation of nuclear transport: central role in development and transformation?. Traffic 6:173–186 [View Article][PubMed]
    [Google Scholar]
  113. Portner A., Gupta K. C., Seyer J. M., Beachey E. H., Kingsbury D. W. 1986; Localization and characterization of Sendai virus nonstructural C and Cʹ proteins by antibodies against synthetic peptides. Virus Res 6:109–121[PubMed] [CrossRef]
    [Google Scholar]
  114. Pouton C. W., Wagstaff K. M., Roth D. M., Moseley G. W., Jans D. A. 2007; Targeted delivery to the nucleus. Adv Drug Deliv Rev 59:698–717 [View Article][PubMed]
    [Google Scholar]
  115. Precious B., Young D. F., Bermingham A., Fearns R., Ryan M., Randall R. E. 1995; Inducible expression of the P, V, and NP genes of the paramyxovirus simian virus 5 in cell lines and an examination of NP-P and NP-V interactions. J Virol 69:8001–8010[PubMed]
    [Google Scholar]
  116. Puri M., Lemon K., Duprex W. P., Rima B. K., Horvath C. M. 2009; A point mutation, E95D, in the mumps virus V protein disengages STAT3 targeting from STAT1 targeting. J Virol 83:6347–6356 [View Article][PubMed]
    [Google Scholar]
  117. Ramachandran A., Parisien J. P., Horvath C. M. 2008; STAT2 is a primary target for measles virus V protein-mediated alpha/beta interferon signaling inhibition. J Virol 82:8330–8338 [View Article][PubMed]
    [Google Scholar]
  118. Ramachandran A., Horvath C. M. 2010; Dissociation of paramyxovirus interferon evasion activities: universal and virus-specific requirements for conserved V protein amino acids in MDA5 interference. J Virol 84:11152–11163 [View Article][PubMed]
    [Google Scholar]
  119. Randall R. E., Bermingham A. 1996; NP:P and NP:V interactions of the paramyxovirus simian virus 5 examined using a novel protein:protein capture assay. Virology 224:121–129 [View Article][PubMed]
    [Google Scholar]
  120. Rawlinson S. M., Moseley G. W. 2015; The nucleolar interface of RNA viruses. Cell Microbiol 17:1108–1120 [View Article][PubMed]
    [Google Scholar]
  121. Redinbaugh M. G., Hogenhout S. A. 2005; Plant rhabdoviruses. Curr Top Microbiol Immunol 292:143–163[PubMed]
    [Google Scholar]
  122. Reich N. C., Liu L. 2006; Tracking STAT nuclear traffic. Nat Rev Immunol 6:602–612 [View Article][PubMed]
    [Google Scholar]
  123. Reutter G. L., Cortese-Grogan C., Wilson J., Moyer S. A. 2001; Mutations in the measles virus C protein that up regulate viral RNA synthesis. Virology 285:100–109 [View Article][PubMed]
    [Google Scholar]
  124. Rexach M., Blobel G. 1995; Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83:683–692[PubMed] [CrossRef]
    [Google Scholar]
  125. Rieder M., Brzózka K., Pfaller C. K., Cox J. H., Stitz L., Conzelmann K. K. 2011; Genetic dissection of interferon-antagonistic functions of rabies virus phosphoprotein: inhibition of interferon regulatory factor 3 activation is important for pathogenicity. J Virol 85:842–852 [View Article][PubMed]
    [Google Scholar]
  126. Robbins J., Dilworth S. M., Laskey R. A., Dingwall C. 1991; Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64:615–623[PubMed] [CrossRef]
    [Google Scholar]
  127. Rodríguez J. A. 2014; Interplay between nuclear transport and ubiquitin/SUMO modifications in the regulation of cancer-related proteins. Semin Cancer Biol 27:11–19 [View Article][PubMed]
    [Google Scholar]
  128. Rodriguez J. J., Horvath C. M. 2004; Host evasion by emerging paramyxoviruses: Hendra virus and Nipah virus V proteins inhibit interferon signaling. Viral Immunol 17:210–219 [View Article][PubMed]
    [Google Scholar]
  129. Rodriguez J. J., Cruz C. D., Horvath C. M. 2004; Identification of the nuclear export signal and STAT-binding domains of the Nipah virus V protein reveals mechanisms underlying interferon evasion. J Virol 78:5358–5367[PubMed] [CrossRef]
    [Google Scholar]
  130. Roth D. M., Moseley G. W., Glover D., Pouton C. W., Jans D. A. 2007; A microtubule-facilitated nuclear import pathway for cancer regulatory proteins. Traffic 8:673–686 [View Article][PubMed]
    [Google Scholar]
  131. Roth D. M., Harper I., Pouton C. W., Jans D. A. 2009; Modulation of nucleocytoplasmic trafficking by retention in cytoplasm or nucleus. J Cell Biochem 107:1160–1167 [View Article][PubMed]
    [Google Scholar]
  132. Röthlisberger A., Wiener D., Schweizer M., Peterhans E., Zurbriggen A., Plattet P. 2010; Two domains of the V protein of virulent canine distemper virus selectively inhibit STAT1 and STAT2 nuclear import. J Virol 84:6328–6343 [View Article][PubMed]
    [Google Scholar]
  133. Rowe C. L., Wagstaff K. M., Oksayan S., Glover D. J., Jans D. A., Moseley G. W. 2016; Nuclear trafficking of the rabies virus interferon antagonist P-protein is regulated by an importin-binding nuclear localization sequence in the C-terminal domain. PLoS One 11:e0150477 [View Article][PubMed]
    [Google Scholar]
  134. Samuel A. S., Paldurai A., Kumar S., Collins P. L., Samal S. K. 2010; Complete genome sequence of avian paramyxovirus (APMV) serotype 5 completes the analysis of nine APMV serotypes and reveals the longest APMV genome. PLoS One 5:e9269 [View Article][PubMed]
    [Google Scholar]
  135. Sato H., Masuda M., Miura R., Yoneda M., Kai C. 2006; Morbillivirus nucleoprotein possesses a novel nuclear localization signal and a CRM1-independent nuclear export signal. Virology 352:121–130 [View Article][PubMed]
    [Google Scholar]
  136. Schluederberg A., Chavanich S. 1974; The role of the nucleus in measles virus replication. Med Microbiol Immunol 160:85–90[PubMed] [CrossRef]
    [Google Scholar]
  137. Schuhmann K. M., Pfaller C. K., Conzelmann K. K. 2011; The measles virus V protein binds to p65 (RelA) to suppress NF-kappaB activity. J Virol 85:3162–3171 [View Article][PubMed]
    [Google Scholar]
  138. Shaw M. L., García-Sastre A., Palese P., Basler C. F. 2004; Nipah virus V and W proteins have a common STAT1-binding domain yet inhibit STAT1 activation from the cytoplasmic and nuclear compartments, respectively. J Virol 78:5633–5641 [View Article][PubMed]
    [Google Scholar]
  139. Shaw M. L., Cardenas W. B., Zamarin D., Palese P., Basler C. F. 2005; Nuclear localization of the Nipah virus W protein allows for inhibition of both virus- and toll-like receptor 3-triggered signaling pathways. J Virol 79:6078–6088 [View Article][PubMed]
    [Google Scholar]
  140. Sleeman K., Bankamp B., Hummel K. B., Lo M. K., Bellini W. J., Rota P. A. 2008; The C, V and W proteins of Nipah virus inhibit minigenome replication. J Gen Virol 89:1300–1308 [View Article][PubMed]
    [Google Scholar]
  141. Sparrer K. M., Pfaller C. K., Conzelmann K. K. 2012; Measles virus C protein interferes with Beta interferon transcription in the nucleus. J Virol 86:796–805 [View Article][PubMed]
    [Google Scholar]
  142. Stüven T., Hartmann E., Görlich D. 2003; Exportin 6: a novel nuclear export receptor that is specific for profilin.actin complexes. EMBO J 22:5928–5940 [View Article][PubMed]
    [Google Scholar]
  143. Sugai A., Sato H., Hagiwara K., Kozuka-Hata H., Oyama M., Yoneda M., Kai C. 2014; Newly identified minor phosphorylation site threonine-279 of measles virus nucleoprotein is a prerequisite for nucleocapsid formation. J Virol 88:1140–1149 [View Article][PubMed]
    [Google Scholar]
  144. Sun W., McCrory T. S., Khaw W. Y., Petzing S., Myers T., Schmitt A. P. 2014; Matrix proteins of Nipah and Hendra viruses interact with beta subunits of AP-3 complexes. J Virol 88:13099–13110 [View Article][PubMed]
    [Google Scholar]
  145. Suryanarayana K., Baczko K., ter Meulen V., Wagner R. R. 1994; Transcription inhibition and other properties of matrix proteins expressed by M genes cloned from measles viruses and diseased human brain tissue. J Virol 68:1532–1543[PubMed]
    [Google Scholar]
  146. Swanson J. A., McNeil P. L. 1987; Nuclear reassembly excludes large macromolecules. Science 238:548–550[PubMed] [CrossRef]
    [Google Scholar]
  147. Sweetman D. A., Miskin J., Baron M. D. 2001; Rinderpest virus C and V proteins interact with the major (L) component of the viral polymerase. Virology 281:193–204 [View Article][PubMed]
    [Google Scholar]
  148. Takayama I., Sato H., Watanabe A., Omi-Furutani M., Sugai A., Kanki K., Yoneda M., Kai C. 2012; The nucleocapsid protein of measles virus blocks host interferon response. Virology 424:45–55 [View Article][PubMed]
    [Google Scholar]
  149. Tay M. Y., Fraser J. E., Chan W. K., Moreland N. J., Rathore A. P., Wang C., Vasudevan S. G., Jans D. A. 2013; Nuclear localization of dengue virus (DENV) 1-4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antiviral Res 99:301–306 [View Article][PubMed]
    [Google Scholar]
  150. tenOever B. R., Servant M. J., Grandvaux N., Lin R., Hiscott J. 2002; Recognition of the measles virus nucleocapsid as a mechanism of IRF-3 activation. J Virol 76:3659–3669[PubMed] [CrossRef]
    [Google Scholar]
  151. Tober C., Seufert M., Schneider H., Billeter M. A., Johnston I. C., Niewiesk S., ter Meulen V., Schneider-Schaulies S. 1998; Expression of measles virus V protein is associated with pathogenicity and control of viral RNA synthesis. J Virol 72:8124–8132[PubMed]
    [Google Scholar]
  152. Ulane C. M., Horvath C. M. 2002; Paramyxoviruses SV5 and HPIV2 assemble STAT protein ubiquitin ligase complexes from cellular components. Virology 304:160–166[PubMed] [CrossRef]
    [Google Scholar]
  153. Ulane C. M., Rodriguez J. J., Parisien J. P., Horvath C. M. 2003; STAT3 ubiquitylation and degradation by mumps virus suppress cytokine and oncogene signaling. J Virol 77:6385–6393[PubMed] [CrossRef]
    [Google Scholar]
  154. Vidy A., Chelbi-Alix M., Blondel D. 2005; Rabies virus P protein interacts with STAT1 and inhibits interferon signal transduction pathways. J Virol 79:14411–14420 [View Article][PubMed]
    [Google Scholar]
  155. Walker P. J., Dietzgen R. G., Joubert D. A., Blasdell K. R. 2011; Rhabdovirus accessory genes. Virus Res 162:110–125 [View Article][PubMed]
    [Google Scholar]
  156. Wang P., Palese P., O'Neill R. E. 1997; The NPI-1/NPI-3 (karyopherin alpha) binding site on the influenza a virus nucleoprotein NP is a nonconventional nuclear localization signal. J Virol 71:1850–1856[PubMed]
    [Google Scholar]
  157. Wang Y. E., Park A., Lake M., Pentecost M., Torres B., Yun T. E., Wolf M. C., Holbrook M. R., Freiberg A. N., Lee B. 2010; Ubiquitin-regulated nuclear-cytoplasmic trafficking of the Nipah virus matrix protein is important for viral budding. PLoS Pathog 6:e1001186 [View Article][PubMed]
    [Google Scholar]
  158. Wardrop E. A., Briedis D. J. 1991; Characterization of V protein in measles virus-infected cells. J Virol 65:3421–3428[PubMed]
    [Google Scholar]
  159. Watanabe A., Yoneda M., Ikeda F., Sugai A., Sato H., Kai C. 2011; Peroxiredoxin 1 is required for efficient transcription and replication of measles virus. J Virol 85:2247–2253 [View Article][PubMed]
    [Google Scholar]
  160. Watanabe N., Kawano M., Tsurudome M., Kusagawa S., Nishio M., Komada H., Shima T., Ito Y. 1996; Identification of the sequences responsible for nuclear targeting of the V protein of human parainfluenza virus type 2. J Gen Virol 77:327–338 [View Article][PubMed]
    [Google Scholar]
  161. Wiltzer L., Larrous F., Oksayan S., Ito N., Marsh G. A., Wang L. F., Blondel D., Bourhy H., Jans D. A., Moseley G. W. 2012; Conservation of a unique mechanism of immune evasion across the lyssavirus genus. J Virol 86:10194–10199 [View Article][PubMed]
    [Google Scholar]
  162. World Health Organisation 2014; Measles: Factsheet No. 286: World Health Organisation. http://www.who.int/mediacentre/factsheets/fs286/en/index.html
  163. Woo P. C., Lau S. K., Wong B. H., Fan R. Y., Wong A. Y., Zhang A. J., Wu Y., Choi G. K., Li K. S. et al. 2012; Feline morbillivirus, a previously undescribed paramyxovirus associated with tubulointerstitial nephritis in domestic cats. Proc Natl Acad Sci U S A 109:5435–5440 [View Article][PubMed]
    [Google Scholar]
  164. Xiao C. Y., Hübner S., Jans D. A. 1997; SV40 large tumor antigen nuclear import is regulated by the double-stranded DNA-dependent protein kinase site (serine 120) flanking the nuclear localization sequence. J Biol Chem 272:22191–22198[PubMed] [CrossRef]
    [Google Scholar]
  165. Xu W., Edwards M. R., Borek D. M., Feagins A. R., Mittal A., Alinger J. B., Berry K. N., Yen B., Hamilton J. et al. 2014; Ebola virus VP24 targets a unique NLS binding site on karyopherin alpha 5 to selectively compete with nuclear import of phosphorylated STAT1. Cell Host Microbe 16:187–200 [View Article][PubMed]
    [Google Scholar]
  166. Yamada H., Hayata S., Omata-Yamada T., Taira H., Mizumoto K., Iwasaki K. 1990; Association of the Sendai virus C protein with nucleocapsids. Arch Virol 113:245–253[PubMed] [CrossRef]
    [Google Scholar]
  167. Yasuhara N., Oka M., Yoneda Y. 2009; The role of the nuclear transport system in cell differentiation. Semin Cell Dev Biol 20:590–599 [View Article][PubMed]
    [Google Scholar]
  168. Yi R., Qin Y., Macara I. G., Cullen B. R. 2003; Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016 [View Article][PubMed]
    [Google Scholar]
  169. Yokota S., Saito H., Kubota T., Yokosawa N., Amano K., Fujii N. 2003; Measles virus suppresses interferon-alpha signaling pathway: suppression of Jak1 phosphorylation and association of viral accessory proteins, C and V, with interferon-alpha receptor complex. Virology 306:135–146[PubMed] [CrossRef]
    [Google Scholar]
  170. Yokoya F., Imamoto N., Tachibana T., Yoneda Y. 1999; beta-Catenin can be transported into the nucleus in a Ran-unassisted manner. Mol Biol Cell 10:1119–1131[PubMed] [CrossRef]
    [Google Scholar]
  171. Yoshida T., Nagai Y'Yoshii S., Maeno K., Matsumoto T. 1976; Membrane (M) protein of HVJ (Sendai virus): its role in virus assembly. Virology 71:143–161[PubMed] [CrossRef]
    [Google Scholar]
  172. Zhang X., Bourhis J. M., Longhi S., Carsillo T., Buccellato M., Morin B., Canard B., Oglesbee M. 2005; Hsp72 recognizes a P binding motif in the measles virus N protein C-terminus. Virology 337:162–174 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000575
Loading
/content/journal/jgv/10.1099/jgv.0.000575
Loading

Data & Media loading...

Most cited Most Cited RSS feed