Comparison of the live-attenuated Japanese encephalitis vaccine SA 14-2 strain with its pre-attenuated virulent parent SA strain: similarities and differences and Free

Abstract

Japanese encephalitis virus (JEV) is the main cause of acute viral encephalitis, primarily affecting children and young adults in the Asia-Pacific region. JEV is a vaccine-preventable pathogen, with four types of JE vaccine licensed in different regions of the world. To date, the most common JEV strain used in vaccine development and production is SA-14-2, an attenuated strain derived from its wild-type parental strain SA. In this study, we directly compared the phenotypic and genotypic characteristics of SA and SA-14-2 to determine the biological and genetic properties associated with their differential virulence. In susceptible BHK-21 cells, SA-14-2 grew slightly more slowly and formed smaller plaques than SA, but unlike SA, it showed almost no expression of the viral protein NS1′, the product of a conserved predicted RNA pseudoknot-mediated ribosomal frameshift. In weanling ICR mice, SA-14-2 was highly attenuated in terms of both neuroinvasiveness and neurovirulence, with its median lethal doses invariably over five logs higher than those of SA when inoculated intramuscularly and intracerebrally. Interestingly, the neurovirulence of SA-14-2 was dependent on mouse age, with the 1- to 7-day-old mice being highly susceptible and the 14- to 21-day-old mice becoming resistant to intracerebral inoculation. At the genome level, SA-14-2 differed from SA by 57 nucleotides, including one silent G-to-A substitution at position 3599 within the predicted RNA pseudoknot for NS1′ synthesis; of the 57 differences, 25 resulted in amino acid substitutions. Our data pave the way for the development of new genetically modified JE vaccines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000574
2016-10-13
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/10/2575.html?itemId=/content/journal/jgv/10.1099/jgv.0.000574&mimeType=html&fmt=ahah

References

  1. Aihara S., Rao C. M., Yu Y. X., Lee T., Watanabe K., Komiya T., Sumiyoshi H., Hashimoto H., Nomoto A. 1991; Identification of mutations that occurred on the genome of Japanese encephalitis virus during the attenuation process. Virus Genes 5:95–109 [View Article][PubMed]
    [Google Scholar]
  2. Arroyo J., Guirakhoo F., Fenner S., Zhang Z. X., Monath T. P., Chambers T. J. 2001; Molecular basis for attenuation of neurovirulence of a yellow fever Virus/Japanese encephalitis virus chimera vaccine (ChimeriVax-JE). J Virol 75:934–942 [View Article][PubMed]
    [Google Scholar]
  3. Assenberg R., Mastrangelo E., Walter T. S., Verma A., Milani M., Owens R. J., Stuart D. I., Grimes J. M., Mancini E. J. 2009; Crystal structure of a novel conformational state of the flavivirus NS3 protein: implications for polyprotein processing and viral replication. J Virol 83:12895–12906 [View Article][PubMed]
    [Google Scholar]
  4. Bollati M., Alvarez K., Assenberg R., Baronti C., Canard B., Cook S., Coutard B., Decroly E., de Lamballerie X. et al. 2010; Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral Res 87:125–148 [View Article][PubMed]
    [Google Scholar]
  5. Brinton M. 2014; Replication cycle and molecular biology of the West Nile virus. Viruses 6:13–53 [View Article]
    [Google Scholar]
  6. Brinton M. A., Basu M. 2015; Functions of the 3′ and 5′ genome RNA regions of members of the genus Flavivirus . Virus Res 206:108–119 [View Article][PubMed]
    [Google Scholar]
  7. Calisher C. H., Gould E. A. 2003; Taxonomy of the virus family Flaviviridae . Adv Virus Res 59:1–19[PubMed] [CrossRef]
    [Google Scholar]
  8. Campbell G. L., Hills S. L., Fischer M., Jacobson J. A., Hoke C. H., Hombach J. M., Marfin A. A., Solomon T., Tsai T. F. et al. 2011; Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ 89:766–774 [View Article][PubMed]
    [Google Scholar]
  9. Chambers T. J., Nestorowicz A., Mason P. W., Rice C. M. 1999; Yellow fever/Japanese encephalitis chimeric viruses: construction and biological properties. J Virol 73:3095–3101[PubMed]
    [Google Scholar]
  10. Chambers T. J., Droll D. A., Jiang X., Wold W. S., Nickells J. A. 2007; JE Nakayama/JE SA14-14-2 virus structural region intertypic viruses: biological properties in the mouse model of neuroinvasive disease. Virology 366:51–61 [View Article][PubMed]
    [Google Scholar]
  11. Eckels K. H., Yu Y. X., Dubois D. R., Marchette N. J., Trent D. W., Johnson A. J. 1988; Japanese encephalitis virus live-attenuated vaccine, Chinese strain SA14-14-2; adaptation to primary canine kidney cell cultures and preparation of a vaccine for human use. Vaccine 6:513–518 [View Article][PubMed]
    [Google Scholar]
  12. Endy T. P., Nisalak A. 2002; Japanese encephalitis virus: ecology and epidemiology. Curr Top Microbiol Immunol 267:11–48[PubMed]
    [Google Scholar]
  13. Firth A. E., Atkins J. F. 2009; A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1′ may derive from ribosomal frameshifting. Virol J 6:14 [View Article]
    [Google Scholar]
  14. Gebhard L. G., Filomatori C. V., Gamarnik A. V. 2011; Functional RNA elements in the dengue virus genome. Viruses 3:1739–1756 [View Article][PubMed]
    [Google Scholar]
  15. Gromowski G. D., Firestone C. Y., Bustos-Arriaga J., Whitehead S. S. 2015a; Genetic and phenotypic properties of vero cell-adapted Japanese encephalitis virus SA14-14-2 vaccine strain variants and a recombinant clone, which demonstrates attenuation and immunogenicity in mice. Am J Trop Med Hyg 92:98–107 [View Article][PubMed]
    [Google Scholar]
  16. Gromowski G. D., Firestone C. Y., Whitehead S. S. 2015b; Genetic determinants of Japanese encephalitis virus vaccine strain SA14-14-2 that govern attenuation of virulence in mice. J Virol 89:6328–6337 [CrossRef]
    [Google Scholar]
  17. Guirakhoo F., Zhang Z. X., Chambers T. J., Delagrave S., Arroyo J., Barrett A. D., Monath T. P. 1999; Immunogenicity, genetic stability, and protective efficacy of a recombinant, chimeric yellow fever-Japanese encephalitis virus (ChimeriVax-JE) as a live, attenuated vaccine candidate against Japanese encephalitis. Virology 257:363–372 [View Article][PubMed]
    [Google Scholar]
  18. Halstead S. B., Thomas S. J. 2011; New japanese encephalitis vaccines: alternatives to production in mouse brain. Expert Rev Vaccines 10:355–364 [View Article][PubMed]
    [Google Scholar]
  19. Kaplan E. L., Meier P. 1958; Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481 [View Article]
    [Google Scholar]
  20. Kato Y., Sato K., Asai K., Akutsu T. 2012; Rtips: fast and accurate tools for RNA 2D structure prediction using integer programming. Nucleic Acids Res 40:W29–34 [View Article][PubMed]
    [Google Scholar]
  21. Kim J. M., Yun S. I., Song B. H., Hahn Y. S., Lee C. H., Oh H. W., Lee Y. M. 2008; A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice. J Virol 82:7846–7862 [View Article][PubMed]
    [Google Scholar]
  22. Kim J. K., Kim J. M., Song B. H., Yun S. I., Yun G. N., Byun S. J., Lee Y. M. 2015; Profiling of viral proteins expressed from the genomic RNA of Japanese encephalitis virus using a panel of 15 region-specific polyclonal rabbit antisera: implications for viral gene expression. PLoS One 10:e0124318 [View Article][PubMed]
    [Google Scholar]
  23. Kimura T., Sasaki M., Okumura M., Kim E., Sawa H. 2010; Flavivirus encephalitis: pathological aspects of mouse and other animal models. Vet Pathol 47:806–818 [View Article][PubMed]
    [Google Scholar]
  24. Labeaud A. D., Bashir F., King C. H. 2011; Measuring the burden of arboviral diseases: the spectrum of morbidity and mortality from four prevalent infections. Popul Health Metr 9:1 [View Article][PubMed]
    [Google Scholar]
  25. Li X. F., Deng Y. Q., Yang H. Q., Zhao H., Jiang T., Yu X. D., Li S. H., Ye Q., Zhu S. Y. et al. 2013a; A chimeric dengue virus vaccine using Japanese encephalitis virus vaccine strain SA14-14-2 as backbone is immunogenic and protective against either parental virus in mice and nonhuman primates. J Virol 87:13694–13705 [View Article]
    [Google Scholar]
  26. Li X. F., Zhao W., Lin F., Ye Q., Wang H. J., Yang D., Li S. H., Zhao H., Xu Y. P. et al. 2013b; Development of chimaeric West Nile virus attenuated vaccine candidate based on the Japanese encephalitis vaccine strain SA14-14-2. J Gen Virol 94:2700–2709 [View Article][PubMed]
    [Google Scholar]
  27. Lindenbach B. D., Thiel H. J., Rice C. M. 2007; Flaviviridae: the viruses and their replication. In Fields Virology, 5th edn. pp. 1101–1152 Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  28. Liu W. J., Zhu M., Pei J. J., Dong X. Y., Liu W., Zhao M. Q., Wang J. Y., Gou H. C., Luo Y. W., Chen J. D. 2013; Molecular phylogenetic and positive selection analysis of Japanese encephalitis virus strains isolated from pigs in China. Virus Res 178:547–552 [View Article][PubMed]
    [Google Scholar]
  29. Lu G., Gong P. 2013; Crystal Structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. PLoS Pathog 9:e1003549 [View Article][PubMed]
    [Google Scholar]
  30. Luo D., Xu T., Hunke C., Grüber G., Vasudevan S. G., Lescar J. 2008; Crystal structure of the NS3 protease-helicase from dengue virus. J Virol 82:173–183 [View Article][PubMed]
    [Google Scholar]
  31. Mackenzie J. S., Barrett A. D., Deubel V. 2002; The Japanese encephalitis serological group of flaviviruses: a brief introduction to the group. Curr Top Microbiol Immunol 267:1–10[PubMed]
    [Google Scholar]
  32. Mackenzie J. S., Gubler D. J., Petersen L. R. 2004; Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10:S98–109 [View Article][PubMed]
    [Google Scholar]
  33. Melian E. B., Hinzman E., Nagasaki T., Firth A. E., Wills N. M., Nouwens A. S., Blitvich B. J., Leung J., Funk A. et al. 2010; NS1′ of flaviviruses in the Japanese encephalitis virus serogroup is a product of ribosomal frameshifting and plays a role in viral neuroinvasiveness. J Virol 84:1641–1647 [View Article][PubMed]
    [Google Scholar]
  34. Monath T. P. 2002; Japanese encephalitis vaccines and future prospects. Curr Top Microbiol Immunol 267:105–138
    [Google Scholar]
  35. Ni H., Burns N. J., Chang G. J. J., Zhang M. J., Wills M. R., Trent D. W., Sanders P. G., Barrett A. D. T. 1994; Comparison of nucleotide and deduced amino acid sequence of the 5′ non-coding region and structural protein genes of the wild-type Japanese encephalitis virus strain SA14 and its attenuated vaccine derivatives. J Gen Virol 75:1505–1510 [View Article]
    [Google Scholar]
  36. Ni H., Chang G. J., Xie H., Trent D. W., Barrett A. D. 1995; Molecular basis of attenuation of neurovirulence of wild-type Japanese encephalitis virus strain SA14 . J Gen Virol 76:409–413 [View Article][PubMed]
    [Google Scholar]
  37. Nitayaphan S., Grant J. A., Chang G. J., Trent D. W. 1990; Nucleotide sequence of the virulent SA14 strain of Japanese encephalitis virus and its attenuated vaccine derivative, SA-14-14-2. Virology 177:541–552 [View Article][PubMed]
    [Google Scholar]
  38. Paranjape S. M., Harris E. 2010; Control of dengue virus translation and replication. Curr Top Microbiol Immunol 338:15–34 [View Article][PubMed]
    [Google Scholar]
  39. Reed L. J., Muench H. 1938; A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  40. Sato K., Kato Y., Hamada M., Akutsu T., Asai K. 2011; IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics 27:i85–93 [View Article][PubMed]
    [Google Scholar]
  41. Schmittgen T. D., Zakrajsek B. A., Mills A. G., Gorn V., Singer M. J., Reed M. W. 2000; Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem 285:194–204 [View Article][PubMed]
    [Google Scholar]
  42. Solomon T. 2006; Control of Japanese encephalitis – within our grasp?. N Engl J Med 355:869–871 [View Article][PubMed]
    [Google Scholar]
  43. Song B. H., Yun S. I., Choi Y. J., Kim J. M., Lee C. H., Lee Y. M. 2008; A complex RNA motif defined by three discontinuous 5-nucleotide-long strands is essential for Flavivirus RNA replication. RNA 14:1791–1813 [View Article][PubMed]
    [Google Scholar]
  44. Song B. H., Yun G. N., Kim J. K., Yun S. I., Lee Y. M. 2012; Biological and genetic properties of SA14-14-2, a live-attenuated Japanese encephalitis vaccine that is currently available for humans. J Microbiol 50:698–706 [View Article][PubMed]
    [Google Scholar]
  45. Thiel H. J., Collett M. S., Gould E. A., Heinz F. X, Houghton M., Meyers G., Purcell R. H., Rice C. M. 2005; Family flaviviridae . In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of viruses pp. 981–998 Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. San Diego, CA: Elsevier Academic Press;
    [Google Scholar]
  46. Wang H. J., Li X. F., Ye Q., Li S. H., Deng Y. Q., Zhao H., Xu Y. P., Ma J., Qin E. D., Qin C. F. 2014; Recombinant chimeric Japanese encephalitis virus/tick-borne encephalitis virus is attenuated and protective in mice. Vaccine 32:949–956 [View Article][PubMed]
    [Google Scholar]
  47. Weaver S. C., Barrett A. D. 2004; Transmission cycles, host range, evolution and emergence of arboviral disease. Nat Rev Microbiol 2:789–801 [View Article][PubMed]
    [Google Scholar]
  48. Weaver S. C., Reisen W. K. 2010; Present and future arboviral threats. Antiviral Res 85:328–345 [View Article][PubMed]
    [Google Scholar]
  49. Westaway E. G., Mackenzie J. M., Khromykh A. A. 2003; Kunjin RNA replication and applications of Kunjin replicons. Adv Virus Res 59:99–140[PubMed] [CrossRef]
    [Google Scholar]
  50. Wilder-Smith A., Halstead S. B. 2010; Japanese encephalitis: update on vaccines and vaccine recommendations. Curr Opin Infect Dis 23:426–431 [View Article][PubMed]
    [Google Scholar]
  51. Winer J., Jung C. K., Shackel I., Williams P. M. 1999; Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro . Anal Biochem 270:41–49 [View Article][PubMed]
    [Google Scholar]
  52. World Health Organization 2012; Recommendations to assure the quality, safety and efficacy of Japanese encephalitis vaccine (live, attenuated) for human use: replacement of WHO TRS No. 910 (Annex 3). pp. 1–89 Geneva, Switzerland: World Health Organization;
  53. Yang D., Li X. F., Ye Q., Wang H. J., Deng Y. Q., Zhu S. Y., Zhang Y., Li S. H., Qin C. F. 2014; Characterization of live-attenuated Japanese encephalitis vaccine virus SA14-14-2. Vaccine 32:2675–2681 [View Article][PubMed]
    [Google Scholar]
  54. Ye Q., Li X. F., Zhao H., Li S. H., Deng Y. Q., Cao R. Y., Song K. Y., Wang H. J., Hua R. H. et al. 2012; A single nucleotide mutation in NS2A of Japanese encephalitis-live vaccine virus (SA14-14-2) ablates NS1′ formation and contributes to attenuation. J Gen Virol 93:1959–1964 [View Article][PubMed]
    [Google Scholar]
  55. Yu Y. 2010; Phenotypic and genotypic characteristics of Japanese encephalitis attenuated live vaccine virus SA14-14-2 and their stabilities. Vaccine 28:3635–3641 [View Article][PubMed]
    [Google Scholar]
  56. Yu Y. 2013; Development of Japanese encephalitis attenuated live vaccine virus SA14-14-2 and its characteristics. In Encephalitis pp. 181–206 Edited by Tkachev S. InTech Open Access:
    [Google Scholar]
  57. Yu Y. X., Wang J. F. 1986; In vitro characteristics of attenuated Japanese encephalitis viruses. Chin J Virol 2:197–201
    [Google Scholar]
  58. Yun S. I., Lee Y. M. 2006; Japanese encephalitis virus: molecular biology and vaccine development. In Molecular Biology of the Flavivirus pp. 225–271 Edited by Kalitzky M., Borowski P. Norwich: Horizon Scientific Press;
    [Google Scholar]
  59. Yun S. I., Lee Y. M. 2014; Japanese encephalitis: the virus and vaccines. Hum Vaccin Immunother 10:263–279 [CrossRef]
    [Google Scholar]
  60. Yun S. I., Kim S. Y., Choi W. Y., Nam J. H., Ju Y. R., Park K. Y., Cho H. W., Lee Y. M. 2003a; Molecular characterization of the full-length genome of the Japanese encephalitis viral strain K87P39. Virus Res 96:129–140 [View Article][PubMed]
    [Google Scholar]
  61. Yun S. I., Kim S. Y., Rice C. M., Lee Y. M. 2003b; Development and application of a reverse genetics system for Japanese encephalitis virus. J Virol 77:6450–6465 [View Article]
    [Google Scholar]
  62. Yun S. I., Choi Y. J., Song B. H., Lee Y. M. 2009; 3′ cis-acting elements that contribute to the competence and efficiency of Japanese encephalitis virus genome replication: functional importance of sequence duplications, deletions, and substitutions. J Virol 83:7909–7930 [View Article][PubMed]
    [Google Scholar]
  63. Yun S. I., Song B. H., Kim J. K., Yun G. N., Lee E. Y., Li L., Kuhn R. J., Rossmann M. G., Morrey J. D., Lee Y. M. 2014; A molecularly cloned, live-attenuated japanese encephalitis vaccine SA14-14-2 virus: a conserved single amino acid in the ij Hairpin of the Viral E glycoprotein determines neurovirulence in mice. PLoS Pathog 10:e1004290 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000574
Loading
/content/journal/jgv/10.1099/jgv.0.000574
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed