1887

Abstract

Japanese encephalitis virus (JEV) is the main cause of acute viral encephalitis, primarily affecting children and young adults in the Asia-Pacific region. JEV is a vaccine-preventable pathogen, with four types of JE vaccine licensed in different regions of the world. To date, the most common JEV strain used in vaccine development and production is SA-14-2, an attenuated strain derived from its wild-type parental strain SA. In this study, we directly compared the phenotypic and genotypic characteristics of SA and SA-14-2 to determine the biological and genetic properties associated with their differential virulence. In susceptible BHK-21 cells, SA-14-2 grew slightly more slowly and formed smaller plaques than SA, but unlike SA, it showed almost no expression of the viral protein NS1′, the product of a conserved predicted RNA pseudoknot-mediated ribosomal frameshift. In weanling ICR mice, SA-14-2 was highly attenuated in terms of both neuroinvasiveness and neurovirulence, with its median lethal doses invariably over five logs higher than those of SA when inoculated intramuscularly and intracerebrally. Interestingly, the neurovirulence of SA-14-2 was dependent on mouse age, with the 1- to 7-day-old mice being highly susceptible and the 14- to 21-day-old mice becoming resistant to intracerebral inoculation. At the genome level, SA-14-2 differed from SA by 57 nucleotides, including one silent G-to-A substitution at position 3599 within the predicted RNA pseudoknot for NS1′ synthesis; of the 57 differences, 25 resulted in amino acid substitutions. Our data pave the way for the development of new genetically modified JE vaccines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000574
2016-10-13
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/10/2575.html?itemId=/content/journal/jgv/10.1099/jgv.0.000574&mimeType=html&fmt=ahah

References

  1. Aihara S., Rao C. M., Yu Y. X., Lee T., Watanabe K., Komiya T., Sumiyoshi H., Hashimoto H., Nomoto A.. 1991; Identification of mutations that occurred on the genome of Japanese encephalitis virus during the attenuation process. Virus Genes5:95–109 [CrossRef][PubMed]
    [Google Scholar]
  2. Arroyo J., Guirakhoo F., Fenner S., Zhang Z. X., Monath T. P., Chambers T. J.. 2001; Molecular basis for attenuation of neurovirulence of a yellow fever Virus/Japanese encephalitis virus chimera vaccine (ChimeriVax-JE). J Virol75:934–942 [CrossRef][PubMed]
    [Google Scholar]
  3. Assenberg R., Mastrangelo E., Walter T. S., Verma A., Milani M., Owens R. J., Stuart D. I., Grimes J. M., Mancini E. J.. 2009; Crystal structure of a novel conformational state of the flavivirus NS3 protein: implications for polyprotein processing and viral replication. J Virol83:12895–12906 [CrossRef][PubMed]
    [Google Scholar]
  4. Bollati M., Alvarez K., Assenberg R., Baronti C., Canard B., Cook S., Coutard B., Decroly E., de Lamballerie X. et al. 2010; Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral Res87:125–148 [CrossRef][PubMed]
    [Google Scholar]
  5. Brinton M.. 2014; Replication cycle and molecular biology of the West Nile virus. Viruses6:13–53 [CrossRef]
    [Google Scholar]
  6. Brinton M. A., Basu M.. 2015; Functions of the 3′ and 5′ genome RNA regions of members of the genus Flavivirus. Virus Res206:108–119 [CrossRef][PubMed]
    [Google Scholar]
  7. Calisher C. H., Gould E. A.. 2003; Taxonomy of the virus family Flaviviridae. Adv Virus Res59:1–19[PubMed][CrossRef]
    [Google Scholar]
  8. Campbell G. L., Hills S. L., Fischer M., Jacobson J. A., Hoke C. H., Hombach J. M., Marfin A. A., Solomon T., Tsai T. F. et al. 2011; Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ89:766–774 [CrossRef][PubMed]
    [Google Scholar]
  9. Chambers T. J., Nestorowicz A., Mason P. W., Rice C. M.. 1999; Yellow fever/Japanese encephalitis chimeric viruses: construction and biological properties. J Virol73:3095–3101[PubMed]
    [Google Scholar]
  10. Chambers T. J., Droll D. A., Jiang X., Wold W. S., Nickells J. A.. 2007; JE Nakayama/JE SA14-14-2 virus structural region intertypic viruses: biological properties in the mouse model of neuroinvasive disease. Virology366:51–61 [CrossRef][PubMed]
    [Google Scholar]
  11. Eckels K. H., Yu Y. X., Dubois D. R., Marchette N. J., Trent D. W., Johnson A. J.. 1988; Japanese encephalitis virus live-attenuated vaccine, Chinese strain SA14-14-2; adaptation to primary canine kidney cell cultures and preparation of a vaccine for human use. Vaccine6:513–518 [CrossRef][PubMed]
    [Google Scholar]
  12. Endy T. P., Nisalak A.. 2002; Japanese encephalitis virus: ecology and epidemiology. Curr Top Microbiol Immunol267:11–48[PubMed]
    [Google Scholar]
  13. Firth A. E., Atkins J. F.. 2009; A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1′ may derive from ribosomal frameshifting. Virol J6:14 [CrossRef]
    [Google Scholar]
  14. Gebhard L. G., Filomatori C. V., Gamarnik A. V.. 2011; Functional RNA elements in the dengue virus genome. Viruses3:1739–1756 [CrossRef][PubMed]
    [Google Scholar]
  15. Gromowski G. D., Firestone C. Y., Bustos-Arriaga J., Whitehead S. S.. 2015a; Genetic and phenotypic properties of vero cell-adapted Japanese encephalitis virus SA14-14-2 vaccine strain variants and a recombinant clone, which demonstrates attenuation and immunogenicity in mice. Am J Trop Med Hyg92:98–107 [CrossRef][PubMed]
    [Google Scholar]
  16. Gromowski G. D., Firestone C. Y., Whitehead S. S.. 2015b; Genetic determinants of Japanese encephalitis virus vaccine strain SA14-14-2 that govern attenuation of virulence in mice. J Virol89:6328–6337[CrossRef]
    [Google Scholar]
  17. Guirakhoo F., Zhang Z. X., Chambers T. J., Delagrave S., Arroyo J., Barrett A. D., Monath T. P.. 1999; Immunogenicity, genetic stability, and protective efficacy of a recombinant, chimeric yellow fever-Japanese encephalitis virus (ChimeriVax-JE) as a live, attenuated vaccine candidate against Japanese encephalitis. Virology257:363–372 [CrossRef][PubMed]
    [Google Scholar]
  18. Halstead S. B., Thomas S. J.. 2011; New japanese encephalitis vaccines: alternatives to production in mouse brain. Expert Rev Vaccines10:355–364 [CrossRef][PubMed]
    [Google Scholar]
  19. Kaplan E. L., Meier P.. 1958; Nonparametric estimation from incomplete observations. J Am Stat Assoc53:457–481 [CrossRef]
    [Google Scholar]
  20. Kato Y., Sato K., Asai K., Akutsu T.. 2012; Rtips: fast and accurate tools for RNA 2D structure prediction using integer programming. Nucleic Acids Res40:W29–34 [CrossRef][PubMed]
    [Google Scholar]
  21. Kim J. M., Yun S. I., Song B. H., Hahn Y. S., Lee C. H., Oh H. W., Lee Y. M.. 2008; A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice. J Virol82:7846–7862 [CrossRef][PubMed]
    [Google Scholar]
  22. Kim J. K., Kim J. M., Song B. H., Yun S. I., Yun G. N., Byun S. J., Lee Y. M.. 2015; Profiling of viral proteins expressed from the genomic RNA of Japanese encephalitis virus using a panel of 15 region-specific polyclonal rabbit antisera: implications for viral gene expression. PLoS One10:e0124318 [CrossRef][PubMed]
    [Google Scholar]
  23. Kimura T., Sasaki M., Okumura M., Kim E., Sawa H.. 2010; Flavivirus encephalitis: pathological aspects of mouse and other animal models. Vet Pathol47:806–818 [CrossRef][PubMed]
    [Google Scholar]
  24. Labeaud A. D., Bashir F., King C. H.. 2011; Measuring the burden of arboviral diseases: the spectrum of morbidity and mortality from four prevalent infections. Popul Health Metr9:1 [CrossRef][PubMed]
    [Google Scholar]
  25. Li X. F., Deng Y. Q., Yang H. Q., Zhao H., Jiang T., Yu X. D., Li S. H., Ye Q., Zhu S. Y. et al. 2013a; A chimeric dengue virus vaccine using Japanese encephalitis virus vaccine strain SA14-14-2 as backbone is immunogenic and protective against either parental virus in mice and nonhuman primates. J Virol87:13694–13705 [CrossRef]
    [Google Scholar]
  26. Li X. F., Zhao W., Lin F., Ye Q., Wang H. J., Yang D., Li S. H., Zhao H., Xu Y. P. et al. 2013b; Development of chimaeric West Nile virus attenuated vaccine candidate based on the Japanese encephalitis vaccine strain SA14-14-2. J Gen Virol94:2700–2709 [CrossRef][PubMed]
    [Google Scholar]
  27. Lindenbach B. D., Thiel H. J., Rice C. M.. 2007; Flaviviridae: the viruses and their replication. In Fields Virology, 5th edn. pp.1101–1152 Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E.. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  28. Liu W. J., Zhu M., Pei J. J., Dong X. Y., Liu W., Zhao M. Q., Wang J. Y., Gou H. C., Luo Y. W., Chen J. D.. 2013; Molecular phylogenetic and positive selection analysis of Japanese encephalitis virus strains isolated from pigs in China. Virus Res178:547–552 [CrossRef][PubMed]
    [Google Scholar]
  29. Lu G., Gong P.. 2013; Crystal Structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. PLoS Pathog9:e1003549 [CrossRef][PubMed]
    [Google Scholar]
  30. Luo D., Xu T., Hunke C., Grüber G., Vasudevan S. G., Lescar J.. 2008; Crystal structure of the NS3 protease-helicase from dengue virus. J Virol82:173–183 [CrossRef][PubMed]
    [Google Scholar]
  31. Mackenzie J. S., Barrett A. D., Deubel V.. 2002; The Japanese encephalitis serological group of flaviviruses: a brief introduction to the group. Curr Top Microbiol Immunol267:1–10[PubMed]
    [Google Scholar]
  32. Mackenzie J. S., Gubler D. J., Petersen L. R.. 2004; Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med10:S98–109 [CrossRef][PubMed]
    [Google Scholar]
  33. Melian E. B., Hinzman E., Nagasaki T., Firth A. E., Wills N. M., Nouwens A. S., Blitvich B. J., Leung J., Funk A. et al. 2010; NS1′ of flaviviruses in the Japanese encephalitis virus serogroup is a product of ribosomal frameshifting and plays a role in viral neuroinvasiveness. J Virol84:1641–1647 [CrossRef][PubMed]
    [Google Scholar]
  34. Monath T. P.. 2002; Japanese encephalitis vaccines and future prospects. Curr Top Microbiol Immunol267:105–138
    [Google Scholar]
  35. Ni H., Burns N. J., Chang G. J. J., Zhang M. J., Wills M. R., Trent D. W., Sanders P. G., Barrett A. D. T.. 1994; Comparison of nucleotide and deduced amino acid sequence of the 5′ non-coding region and structural protein genes of the wild-type Japanese encephalitis virus strain SA14 and its attenuated vaccine derivatives. J Gen Virol75:1505–1510 [CrossRef]
    [Google Scholar]
  36. Ni H., Chang G. J., Xie H., Trent D. W., Barrett A. D.. 1995; Molecular basis of attenuation of neurovirulence of wild-type Japanese encephalitis virus strain SA14. J Gen Virol76:409–413 [CrossRef][PubMed]
    [Google Scholar]
  37. Nitayaphan S., Grant J. A., Chang G. J., Trent D. W.. 1990; Nucleotide sequence of the virulent SA14 strain of Japanese encephalitis virus and its attenuated vaccine derivative, SA-14-14-2. Virology177:541–552 [CrossRef][PubMed]
    [Google Scholar]
  38. Paranjape S. M., Harris E.. 2010; Control of dengue virus translation and replication. Curr Top Microbiol Immunol338:15–34 [CrossRef][PubMed]
    [Google Scholar]
  39. Reed L. J., Muench H.. 1938; A simple method of estimating fifty percent endpoints. Am J Hyg27:493–497
    [Google Scholar]
  40. Sato K., Kato Y., Hamada M., Akutsu T., Asai K.. 2011; IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics27:i85–93 [CrossRef][PubMed]
    [Google Scholar]
  41. Schmittgen T. D., Zakrajsek B. A., Mills A. G., Gorn V., Singer M. J., Reed M. W.. 2000; Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem285:194–204 [CrossRef][PubMed]
    [Google Scholar]
  42. Solomon T.. 2006; Control of Japanese encephalitis – within our grasp?. N Engl J Med355:869–871 [CrossRef][PubMed]
    [Google Scholar]
  43. Song B. H., Yun S. I., Choi Y. J., Kim J. M., Lee C. H., Lee Y. M.. 2008; A complex RNA motif defined by three discontinuous 5-nucleotide-long strands is essential for Flavivirus RNA replication. RNA14:1791–1813 [CrossRef][PubMed]
    [Google Scholar]
  44. Song B. H., Yun G. N., Kim J. K., Yun S. I., Lee Y. M.. 2012; Biological and genetic properties of SA14-14-2, a live-attenuated Japanese encephalitis vaccine that is currently available for humans. J Microbiol50:698–706 [CrossRef][PubMed]
    [Google Scholar]
  45. Thiel H. J., Collett M. S., Gould E. A., Heinz F. X, Houghton M., Meyers G., Purcell R. H., Rice C. M.. 2005; Family flaviviridae. In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of viruses pp.981–998 Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A.. San Diego, CA: Elsevier Academic Press;
    [Google Scholar]
  46. Wang H. J., Li X. F., Ye Q., Li S. H., Deng Y. Q., Zhao H., Xu Y. P., Ma J., Qin E. D., Qin C. F.. 2014; Recombinant chimeric Japanese encephalitis virus/tick-borne encephalitis virus is attenuated and protective in mice. Vaccine32:949–956 [CrossRef][PubMed]
    [Google Scholar]
  47. Weaver S. C., Barrett A. D.. 2004; Transmission cycles, host range, evolution and emergence of arboviral disease. Nat Rev Microbiol2:789–801 [CrossRef][PubMed]
    [Google Scholar]
  48. Weaver S. C., Reisen W. K.. 2010; Present and future arboviral threats. Antiviral Res85:328–345 [CrossRef][PubMed]
    [Google Scholar]
  49. Westaway E. G., Mackenzie J. M., Khromykh A. A.. 2003; Kunjin RNA replication and applications of Kunjin replicons. Adv Virus Res59:99–140[PubMed][CrossRef]
    [Google Scholar]
  50. Wilder-Smith A., Halstead S. B.. 2010; Japanese encephalitis: update on vaccines and vaccine recommendations. Curr Opin Infect Dis23:426–431 [CrossRef][PubMed]
    [Google Scholar]
  51. Winer J., Jung C. K., Shackel I., Williams P. M.. 1999; Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem270:41–49 [CrossRef][PubMed]
    [Google Scholar]
  52. World Health Organization 2012; Recommendations to assure the quality, safety and efficacy of Japanese encephalitis vaccine (live, attenuated) for human use: replacement of WHO TRS No. 910 (Annex 3). pp.1–89 Geneva, Switzerland: World Health Organization;
  53. Yang D., Li X. F., Ye Q., Wang H. J., Deng Y. Q., Zhu S. Y., Zhang Y., Li S. H., Qin C. F.. 2014; Characterization of live-attenuated Japanese encephalitis vaccine virus SA14-14-2. Vaccine32:2675–2681 [CrossRef][PubMed]
    [Google Scholar]
  54. Ye Q., Li X. F., Zhao H., Li S. H., Deng Y. Q., Cao R. Y., Song K. Y., Wang H. J., Hua R. H. et al. 2012; A single nucleotide mutation in NS2A of Japanese encephalitis-live vaccine virus (SA14-14-2) ablates NS1′ formation and contributes to attenuation. J Gen Virol93:1959–1964 [CrossRef][PubMed]
    [Google Scholar]
  55. Yu Y.. 2010; Phenotypic and genotypic characteristics of Japanese encephalitis attenuated live vaccine virus SA14-14-2 and their stabilities. Vaccine28:3635–3641 [CrossRef][PubMed]
    [Google Scholar]
  56. Yu Y.. 2013; Development of Japanese encephalitis attenuated live vaccine virus SA14-14-2 and its characteristics. In Encephalitis pp.181–206 Edited by Tkachev S.. InTech Open Access:
    [Google Scholar]
  57. Yu Y. X., Wang J. F.. 1986; In vitro characteristics of attenuated Japanese encephalitis viruses. Chin J Virol2:197–201
    [Google Scholar]
  58. Yun S. I., Lee Y. M.. 2006; Japanese encephalitis virus: molecular biology and vaccine development. In Molecular Biology of the Flavivirus pp.225–271 Edited by Kalitzky M., Borowski P.. Norwich: Horizon Scientific Press;
    [Google Scholar]
  59. Yun S. I., Lee Y. M.. 2014; Japanese encephalitis: the virus and vaccines. Hum Vaccin Immunother10:263–279[CrossRef]
    [Google Scholar]
  60. Yun S. I., Kim S. Y., Choi W. Y., Nam J. H., Ju Y. R., Park K. Y., Cho H. W., Lee Y. M.. 2003a; Molecular characterization of the full-length genome of the Japanese encephalitis viral strain K87P39. Virus Res96:129–140 [CrossRef][PubMed]
    [Google Scholar]
  61. Yun S. I., Kim S. Y., Rice C. M., Lee Y. M.. 2003b; Development and application of a reverse genetics system for Japanese encephalitis virus. J Virol77:6450–6465 [CrossRef]
    [Google Scholar]
  62. Yun S. I., Choi Y. J., Song B. H., Lee Y. M.. 2009; 3′ cis-acting elements that contribute to the competence and efficiency of Japanese encephalitis virus genome replication: functional importance of sequence duplications, deletions, and substitutions. J Virol83:7909–7930 [CrossRef][PubMed]
    [Google Scholar]
  63. Yun S. I., Song B. H., Kim J. K., Yun G. N., Lee E. Y., Li L., Kuhn R. J., Rossmann M. G., Morrey J. D., Lee Y. M.. 2014; A molecularly cloned, live-attenuated japanese encephalitis vaccine SA14-14-2 virus: a conserved single amino acid in the ij Hairpin of the Viral E glycoprotein determines neurovirulence in mice. PLoS Pathog10:e1004290 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000574
Loading
/content/journal/jgv/10.1099/jgv.0.000574
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error