1887

Abstract

Sapelovirus A (SV-A), formerly known as porcine sapelovirus as a member of a new genus Sapelovirus, is known to cause enteritis, pneumonia, polioencephalomyelitis and reproductive disorders in pigs. We have recently identified α2,3-linked sialic acid on GD1a ganglioside as a functional SV-A receptor rich in the cells of pigs and chickens. However, the role of GD1a in viral pathogenesis remains elusive. Here, we demonstrated that a Korean SV-A strain could induce diarrhoea and intestinal pathology in piglets but not in chicks. Moreover, this Korean SV-A strain had mild extra-intestinal tropisms appearing as mild, non-suppurative myelitis, encephalitis and pneumonia in piglets, but not in chicks. By real-time reverse transcription (RT) PCR, higher viral RNA levels were detected in faecal samples than in sera or extra-intestinal organs from virus-inoculated piglets. Immunohistochemistry confirmed that high viral antigens were detected in the epithelial cells of intestines from virus-inoculated piglets but not from chicks. This Korean SV-A strain could bind the cultured cell lines originated from various species, but replication occurred only in cells of porcine origin. These data indicated that this Korean SV-A strain could replicate and induce pathology in piglets but not in chicks, suggesting that additional porcine-specific factors are required for virus entry and replication. In addition, this Korean SV-A strain is enteropathogenic, but could spread to the bloodstream from the gut and disseminate to extra-intestinal organs and tissues. These results will contribute to our understanding of SV-A pathogenesis so that efficient anti-sapelovirus drugs and vaccines could be developed in the future.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000571
2016-10-13
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/10/2566.html?itemId=/content/journal/jgv/10.1099/jgv.0.000571&mimeType=html&fmt=ahah

References

  1. Adams M. J., Lefkowitz E. J., King A. M., Bamford D. H., Breitbart M., Davison A. J., Ghabrial S. A., Gorbalenya A. E., Knowles N. J. et al.( 2015;). Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2015). . Arch Virol 160: 1837–1850. [CrossRef] [PubMed]
    [Google Scholar]
  2. Alexander T. J. L., Betts A. O..( 1967;). Further studies on porcine enteroviruses isolated at Cambridge. I.-Infections in SPF pigs and the preparation of monospecific antisera. . Res Vet Sci 8: 321–329.[PubMed]
    [Google Scholar]
  3. Alexandersen S., Knowles N. J., Dekker A., Belsham G. J., Zhang Z., Koenen F..( 2012;). Picornaviruses. . In Diseases of Swine, , 10th edn., pp. 587–620. Edited by Zimmerman J. J., Karriker L. A., Ramirez A., Schwartz K. J., Stevenson G. W.. West Sussex, UK:: Wiley-Blackwell;.
    [Google Scholar]
  4. Blutt S. E., Conner M. E..( 2007;). Rotavirus: to the gut and beyond!. Curr Opin Gastroenterol 23: 39–43. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bohl E. H., Singh K. V., Hancock B. B., Kasza L..( 1960;). Studies on five porcine enteroviruses. . Am J Vet Res 21: 99–103.[PubMed]
    [Google Scholar]
  6. Chen J., Chen F., Zhou Q., Li W., Chen Y., Song Y., Zhang X., Xue C., Bi Y., Cao Y..( 2014;). Development of a minor groove binder assay for real-time PCR detection of porcine Sapelovirus. . J Virol Methods 198: 69–74. [CrossRef] [PubMed]
    [Google Scholar]
  7. de Graaf M., Fouchier R. A. M..( 2014;). Role of receptor binding specificity in influenza A virus transmission and pathogenesis. . EMBO J 33: 823–841. [CrossRef] [PubMed]
    [Google Scholar]
  8. Dunne H. W., Kradel D. C., Clark C. D., Bubash G. R., Ammerman E..( 1967;). Porcine enteroviruses: a serologic comparison of thirty-eight Pennsylvania isolates with other reported North American strains, Teschen, Talfan, and T80 serums – a progress report. . Am J Vet Res 28: 557–568.[PubMed]
    [Google Scholar]
  9. Dunne H. W., Wang J. T., Ammerman E. H..( 1971;). Classification of North American porcine enteroviruses: a comparison with European and Japanese strains. . Infect Immun 4: 619–631.[PubMed]
    [Google Scholar]
  10. Huang J., Gentry R. F., Zarkower A..( 1980;). Experimental infection of pregnant sows with porcine enteroviruses. . Am J Vet Res 41: 469–473.[PubMed]
    [Google Scholar]
  11. Izawa H., Bankowski R. A., Howarth J. A..( 1962;). Porcine enteroviruses. I. Properties of three isolates from swine with diarrhea and one from apparently normal swine. . Am J Vet Res 23: 1131–1141.[PubMed]
    [Google Scholar]
  12. Kadoi K., Kobori S., Morimoto T..( 1970;). Studies on swine enteroviruses. Japanese 6th serotype and relationship between heat susceptibility and cytopathic effects. . Japan J Microbiol 14: 111–121.[CrossRef]
    [Google Scholar]
  13. Kim D. S., Son K. Y., Koo K. M., Kim J. Y., Alfajaro M. M., Park J. G., Hosmillo M., Soliman M., Baek Y. B. et al.( 2016;). Porcine sapelovirus uses α2,3-linked sialic acid on gd1a ganglioside as a receptor. . J Virol 90: 4067–4077. [CrossRef] [PubMed]
    [Google Scholar]
  14. Krumbholz A., Dauber M., Henke A., Birch-Hirschfeld E., Knowles N. J., Stelzner A., Zell R..( 2002;). Sequencing of porcine enterovirus groups II and III reveals unique features of both virus groups. . J Virol 76: 5813–5821. [CrossRef] [PubMed]
    [Google Scholar]
  15. L'Ecuyer C., Greig A. S..( 1966;). Serological and biological studies on porcine enteroviruses isolated in Canada. . Can Vet J 7: 148–154.[PubMed]
    [Google Scholar]
  16. Lamont P. H., Betts A. O..( 1960;). Studies on enteroviruses of the pig-IV. The isolation in tissue culture of a possible enteric cytopathogenic swine orphan (ECSO) virus (V 13) from the faeces of a pig. . Res Vet Sci 1: 152–159.
    [Google Scholar]
  17. Lan D., Ji W., Yang S., Cui L., Yang Z., Yuan C., Hua X..( 2011;). Isolation and characterization of the first Chinese porcine sapelovirus strain. . Arch Virol 156: 1567–1574. [CrossRef] [PubMed]
    [Google Scholar]
  18. Neu U., Bauer J., Stehle T..( 2011;). Viruses and sialic acids: rules of engagement. . Curr Opin Struct Biol 21: 610–618. [CrossRef] [PubMed]
    [Google Scholar]
  19. Oberste M. S., Maher K., Pallansch M. A..( 2002;). Molecular phylogeny and proposed classification of the simian picornaviruses. . J Virol 76: 1244–1251. [CrossRef] [PubMed]
    [Google Scholar]
  20. Oberste M. S., Maher K., Pallansch M. A..( 2003;). Genomic evidence that simian virus 2 and six other simian picornaviruses represent a new genus in Picornaviridae. . Virology 314: 283–293. [CrossRef] [PubMed]
    [Google Scholar]
  21. Park J. G., Kim H. J., Matthijnssens J., Alfajaro M. M., Kim D. S., Son K. Y., Kwon H. J., Hosmillo M., Ryu E. H. et al.( 2013;). Different virulence of porcine and porcine-like bovine rotavirus strains with genetically nearly identical genomes in piglets and calves. . Vet Res 44: 88. [CrossRef] [PubMed]
    [Google Scholar]
  22. Park S. J., Kim G. Y., Choy H. E., Hong Y. J., Saif L. J., Jeong J. H., Park S. I., Kim H. H., Kim S. K. et al.( 2007;). Dual enteric and respiratory tropisms of winter dysentery bovine coronavirus in calves. . Arch Virol 152: 1885–1900. [CrossRef] [PubMed]
    [Google Scholar]
  23. Racaniello V. R..( 2013;). Picornaviridae. . In Fields Virology, , 6th edn.,vol. 1 pp. 453–489. Edited by Knipe D. M., Howley P. M.. Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  24. Raman R., Tharakaraman K., Shriver Z., Jayaraman A., Sasisekharan V., Sasisekharan R..( 2014;). Glycan receptor specificity as a useful tool for characterization and surveillance of influenza A virus. . Trends Microbiol 22: 632–641. [CrossRef] [PubMed]
    [Google Scholar]
  25. Schock A., Gurrala R., Fuller H., Foyle L., Dauber M., Martelli F., Scholes S., Roberts L., Steinbach F., Dastjerdi A..( 2014;). Investigation into an outbreak of encephalomyelitis caused by a neuroinvasive porcine sapelovirus in the United Kingdom. . Vet Microbiol 172: 381–389. [CrossRef] [PubMed]
    [Google Scholar]
  26. Sibalin M..( 1963;). An investigation and characterization of enterovirus strains in Swedish pigs. II. Pathogenicity tests and serological properties. . Acta Vet Scand 4: 332–355.
    [Google Scholar]
  27. Son K.-Y., Kim D.-S., Kwon J., Choi J.-S., Kang M.-I., Belsham G. J., Cho K.-O..( 2014a;). Full-length genomic analysis of Korean porcine Sapelovirus strains. . PLoS One 9:,e107860. [CrossRef]
    [Google Scholar]
  28. Son K.-Y., Kim D.-S., Matthijnssens J., Kwon H.-J., Park J.-G., Hosmillo M., Alfajaro M. M., Ryu E.-H., Kim J.-Y. et al.( 2014b;). Molecular epidemiology of Korean porcine sapeloviruses. . Arch Virol 159: 1175–1180. [CrossRef] [PubMed]
    [Google Scholar]
  29. Tseng C. H., Tsai H. J..( 2007;). Sequence analysis of a duck picornavirus isolate indicates that it together with porcine enterovirus type 8 and simian picornavirus type 2 should be assigned to a new picornavirus genus. . Virus Res 129: 104–114. [CrossRef] [PubMed]
    [Google Scholar]
  30. Yamanouchi K., Bankowski R. A., Howarth J. A..( 1965;). Physical and biological properties of the Chico strain of porcine enterovirus. . J Infect Dis 115: 345–355. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000571
Loading
/content/journal/jgv/10.1099/jgv.0.000571
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error