1887

Abstract

Natural 2′-modified nucleosides are the most widely used antiviral therapy. In their triphosphorylated form, also known as nucleotide analogues, they target the active site of viral polymerases. Viral polymerases have an overall right-handed structure that includes the palm, fingers and thumb domains. These domains are further subdivided into structurally conserved motifs A–G, common to all viral polymerases. The structural motifs encapsulate the allosteric/initiation (N1) and orthosteric/catalytic (N2) nucleotide-binding sites. The current study investigated how nucleotide analogues explore the N2 site of viral polymerases from three genera of the family using a stochastic, biophysical, Metropolis Monte Carlo-based software. The biophysical simulations showed a statistical distinction in nucleotide-binding energy and exploration between phylogenetically related viral polymerases. This distinction is clearly demonstrated by the respective analogue contacts made with conserved viral polymerase residues, the heterogeneous dynamics of structural motifs, and the orientation of the nucleotide analogues within the N2 site. Being able to simulate what occurs within viral-polymerase-binding sites can prove useful in rational drug designs against viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000569
2016-10-13
2020-04-01
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/10/2552.html?itemId=/content/journal/jgv/10.1099/jgv.0.000569&mimeType=html&fmt=ahah

References

  1. Abascal F., Zardoya R., Posada D.. 2005; ProtTest: selection of best-fit models of protein evolution. Bioinformatics21:2104–2105 [CrossRef][PubMed]
    [Google Scholar]
  2. Appleby T. C., Perry J. K., Murakami E., Barauskas O., Feng J., Cho A., Fox D., Wetmore D. R., McGrath M. E. et al. 2015; Viral replication: structural basis for RNA replication by the hepatitis C virus polymerase. Science347:771–775 [CrossRef][PubMed]
    [Google Scholar]
  3. Argos P.. 1988; A sequence motif in many polymerases. Nucleic Acids Res16:9909–9916 [CrossRef][PubMed]
    [Google Scholar]
  4. Atilgan A. R., Durell S. R., Jernigan R. L., Demirel M. C., Keskin O., Bahar I.. 2001; Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J80:505–515 [CrossRef][PubMed]
    [Google Scholar]
  5. Bakan A., Meireles L. M., Bahar I.. 2011; ProDy: protein dynamics inferred from theory and experiments. Bioinformatics27:1575–1577 [CrossRef][PubMed]
    [Google Scholar]
  6. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E.. 2000; The protein data bank. Nucleic Acids Res28:235–242 [CrossRef][PubMed]
    [Google Scholar]
  7. Borrelli K. W., Vitalis A., Alcantara R., Guallar V.. 2005; PELE: protein energy landscape exploration. a novel Monte Carlo based technique. J Chem Theory Comput1:1304–1311 [CrossRef][PubMed]
    [Google Scholar]
  8. Bressanelli S., Tomei L., Rey F. A., De Francesco R.. 2002; Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J Virol76:3482–3492 [CrossRef][PubMed]
    [Google Scholar]
  9. Brown J. A., Thorpe I. F.. 2015; Dual allosteric inhibitors jointly modulate protein structure and dynamics in the hepatitis C virus polymerase. Biochemistry54:4131–4141 [CrossRef][PubMed]
    [Google Scholar]
  10. Bruenn J. A.. 2003; A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res31:1821–1829 [CrossRef][PubMed]
    [Google Scholar]
  11. Cameron C. E., Moustafa I. M., Arnold J. J.. 2009; Dynamics: the missing link between structure and function of the viral RNA-dependent RNA polymerase?. Curr Opin Struct Biol19:768–774 [CrossRef][PubMed]
    [Google Scholar]
  12. Carroll S. S., Tomassini J. E., Bosserman M., Getty K., Stahlhut M. W., Eldrup A. B., Bhat B., Hall D., Simcoe A. L. et al. 2003; Inhibition of hepatitis C virus RNA replication by 2′-modified nucleoside analogs. J Biol Chem278:11979–11984 [CrossRef][PubMed]
    [Google Scholar]
  13. Choi K. H., Groarke J. M., Young D. C., Kuhn R. J., Smith J. L., Pevear D. C., Rossmann M. G.. 2004; The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation. Proc Natl Acad Sci U S A101:4425–4430 [CrossRef][PubMed]
    [Google Scholar]
  14. Cohen J.. 1988; Statistical Power Analysis for the Behavioral Sciences Hillsdale, NJ: Erlbaum;
    [Google Scholar]
  15. Curti E., Jaeger J.. 2013; Residues Arg283, Arg285, and Ile287 in the nucleotide binding pocket of bovine viral diarrhea virus NS5B RNA polymerase affect catalysis and fidelity. J Virol87:199–207 [CrossRef][PubMed]
    [Google Scholar]
  16. Davis B. C., Brown J. A., Thorpe I. F.. 2015; Allosteric inhibitors have distinct effects, but also common modes of action, in the HCV polymerase. Biophys J108:1785–1795 [CrossRef][PubMed]
    [Google Scholar]
  17. De Francesco R., Migliaccio G.. 2005; Challenges and successes in developing new therapies for hepatitis C. Nature436:953–960 [CrossRef][PubMed]
    [Google Scholar]
  18. Dutartre H., Boretto J. I., Guillemot J. C., Canard B.. 2005; A relaxed discrimination of 2′-O-methyl-GTP relative to GTP between de novo and elongative RNA synthesis by the hepatitis C RNA-dependent RNA polymerase NS5B. J Biol Chem280:6359–6368 [CrossRef][PubMed]
    [Google Scholar]
  19. Eswar N., Webb B., Marti-Renom M. A., Madhusudhan M. S., Eramian D., Shen M.-Y., Pieper U., Sali A.. 2006; Comparative protein structure modeling using Modeller. In Current Protocols in Protein Science New York: John Wiley & Sons, Inc;
    [Google Scholar]
  20. Eyer L., Nencka R., Huvarová I., Palus M., Joao Alves M., Gould E. A., De Clercq E., Růžek D.. 2016; Nucleoside inhibitors of Zika virus. J Infect Dis214:707–711 [CrossRef][PubMed]
    [Google Scholar]
  21. Eyer L., Valdés J. J., Gil V. A., Nencka R., Hřebabecký H., Šála M., Salát J., Černý J., Palus M. et al. 2015; Nucleoside inhibitors of tick-borne encephalitis virus. Antimicrob Agents Chemother59:5483–5493 [CrossRef][PubMed]
    [Google Scholar]
  22. Ferrer-Orta C., Arias A., Perez-Luque R., Escarmis C., Domingo E., Verdaguer N.. 2007; Sequential structures provide insights into the fidelity of RNA replication. Proc Natl Acad Sci U S A104:9463–9468 [CrossRef]
    [Google Scholar]
  23. Galmarini C. M., Mackey J. R., Dumontet C.. 2001; Nucleoside analogues: mechanisms of drug resistance and reversal strategies. Leukemia15:875–890 [CrossRef][PubMed]
    [Google Scholar]
  24. Gil V. A., Guallar V.. 2013; pyRMSD: a python package for efficient pairwise RMSD matrix calculation and handling. Bioinformatics29:2363–2364 [CrossRef][PubMed]
    [Google Scholar]
  25. Gil V. A., Guallar V.. 2014; pyProCT: automated cluster analysis for structural bioinformatics. J Chem Theory Comput10:3236–3243[CrossRef]
    [Google Scholar]
  26. Graci J. D., Cameron C. E.. 2004; Challenges for the development of ribonucleoside analogues as inducers of error catastrophe. Antivir Chem Chemother15:1–13 [CrossRef][PubMed]
    [Google Scholar]
  27. Graci J. D., Cameron C. E.. 2008; Therapeutically targeting RNA viruses via lethal mutagenesis. Future Virol3:553–566 [CrossRef][PubMed]
    [Google Scholar]
  28. Humphrey W., Dalke A., Schulten K.. 1996; VMD: visual molecular dynamics. J Mol Graph14:33–38 [CrossRef]
    [Google Scholar]
  29. Iglesias N. G., Filomatori C. V., Gamarnik A. V.. 2011; The F1 motif of dengue virus polymerase NS5 is involved in promoter-dependent RNA synthesis. J Virol85:5745–5756 [CrossRef][PubMed]
    [Google Scholar]
  30. Jablonski S. A., Morrow C. D.. 1995; Mutation of the aspartic acid residues of the GDD sequence motif of poliovirus RNA-dependent RNA polymerase results in enzymes with altered metal ion requirements for activity. J Virol69:1532–1539
    [Google Scholar]
  31. Jacobson M. P., Friesner R. A., Xiang Z., Honig B.. 2002; On the role of the crystal environment in determining protein side-chain conformations. J Mol Biol320:597–608 [CrossRef][PubMed]
    [Google Scholar]
  32. Jorgensen W. L., Tirado-Rives J.. 1988; The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc110:1657–1666 [CrossRef]
    [Google Scholar]
  33. Katoh K., Toh H.. 2008; Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform9:286–298 [CrossRef][PubMed]
    [Google Scholar]
  34. Koonin E. V.. 1991; The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol72:2197–2206 [CrossRef][PubMed]
    [Google Scholar]
  35. Läärä E.. 2009; Statistics: reasoning on uncertainty, and the insignificance of testing null. Annales Zoologici Fennici46:138–157 [CrossRef]
    [Google Scholar]
  36. Lai V. C., Kao C. C., Ferrari E., Park J., Uss A. S., Wright-Minogue J., Hong Z., Lau J. Y.. 1999; Mutational analysis of bovine viral diarrhea virus RNA-dependent RNA polymerase. J Virol73:10129–10136[PubMed]
    [Google Scholar]
  37. Li X., Jacobson M. P., Zhu K., Zhao S., Friesner R. A.. 2007; Assignment of polar states for protein amino acid residues using an interaction cluster decomposition algorithm and its application to high resolution protein structure modeling. Proteins66:824–837 [CrossRef]
    [Google Scholar]
  38. Lin T. S., Chen M. S., McLaren C., Gao Y. S., Ghazzouli I., Prusoff W. H.. 1987; Synthesis and antiviral activity of various 3′-azido, 3′-amino, 2′,3′-unsaturated, and 2′3′-dideoxy analogs of pyrimidine deoxyribonucleosides against retroviruses. J Med Chem30:440–444 [CrossRef][PubMed]
    [Google Scholar]
  39. Lohmann V., Körner F., Herian U., Bartenschlager R.. 1997; Biochemical properties of hepatitis C virus NS5B RNA-dependent RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity. J Virol71:8416–8428[PubMed]
    [Google Scholar]
  40. Lu G., Gong P.. 2013; Crystal structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. PLoS Pathog9:e1003549 [CrossRef][PubMed]
    [Google Scholar]
  41. Madadkar-Sobhani A., Guallar V.. 2013; pele web server: atomistic study of biomolecular systems at your fingertips. Nucleic Acids Res41:W322–W328 [CrossRef][PubMed]
    [Google Scholar]
  42. Malet H., Egloff M. P., Selisko B., Butcher R. E., Wright P. J., Roberts M., Gruez A., Sulzenbacher G., Vonrhein C. et al. 2007; Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. J Biol Chem282:10678–10689 [CrossRef][PubMed]
    [Google Scholar]
  43. Migliaccio G., Tomassini J. E., Carroll S. S., Tomei L., Altamura S., Bhat B., Bartholomew L., Bosserman M. R., Ceccacci A. et al. 2003; Characterization of resistance to non-obligate chain-terminating ribonucleoside analogs that inhibit hepatitis C virus replication in vitro. J Biol Chem278:49164–49170 [CrossRef][PubMed]
    [Google Scholar]
  44. Mosley R. T., Edwards T. E., Murakami E., Lam A. M., Grice R. L., Du J., Sofia M. J., Furman P. A., Otto M. J.. 2012; Structure of hepatitis C virus polymerase in complex with primer-template RNA. J Virol86:6503–6511 [CrossRef][PubMed]
    [Google Scholar]
  45. Moustafa I. M., Shen H., Morton B., Colina C. M., Cameron C. E.. 2011; Molecular dynamics simulations of viral RNA polymerases link conserved and correlated motions of functional elements to fidelity. J Mol Biol410:159–181 [CrossRef][PubMed]
    [Google Scholar]
  46. O'Farrell D., Trowbridge R., Rowlands D., Jäger J.. 2003; Substrate complexes of hepatitis C virus RNA polymerase (HC-J4): structural evidence for nucleotide import and de novo initiation. J Mol Biol326:1025–1035 [CrossRef][PubMed]
    [Google Scholar]
  47. Poch O., Sauvaget I., Delarue M., Tordo N.. 1989; Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J8:3867–3874[PubMed]
    [Google Scholar]
  48. R Core Team 2013; R: A Language and Environment for Statistical Computing Vienna, Austria: The R Foundation for Statistical Computing;
    [Google Scholar]
  49. Rousseeuw P. J.. 1987; Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math20:53–65 [CrossRef]
    [Google Scholar]
  50. Schrödinger 2010; Maestro, 9.1 edn. New York: Schrödinger, LLC;
    [Google Scholar]
  51. Shen H., Sun H., Li G.. 2012; What is the role of motif D in the nucleotide incorporation catalyzed by the RNA-dependent RNA polymerase from poliovirus?. PLoS Comput Biol8:e1002851 [CrossRef][PubMed]
    [Google Scholar]
  52. Stamatakis A., Hoover P., Rougemont J.. 2008; A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol57:758–771 [CrossRef][PubMed]
    [Google Scholar]
  53. Still W. C., Tempczyk A., Hawley R. C., Hendrickson T.. 1990; Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc112:6127–6129 [CrossRef]
    [Google Scholar]
  54. Surana P., Satchidanandam V., Nair D. T.. 2014; RNA-dependent RNA polymerase of Japanese encephalitis virus binds the initiator nucleotide GTP to form a mechanistically important pre-initiation state. Nucleic Acids Res42:2758–2773 [CrossRef][PubMed]
    [Google Scholar]
  55. Tamar S., Aaron F.. 1992; TNPACK – A truncated Newton minimization package for large-scale problems: I. algorithm and usage. ACM Trans Math Softw18:46–70[CrossRef]
    [Google Scholar]
  56. Te Velthuis A. J. W., Robb N. C., Kapanidis A. N., Fodor E.. 2016; The role of the priming loop in influenza A virus RNA synthesis. Nat Microbiol 1:16029
    [Google Scholar]
  57. Thompson A. A., Peersen O. B.. 2004; Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase. EMBO J23:3462–3471 [CrossRef][PubMed]
    [Google Scholar]
  58. Yang X., Smidansky E. D., Maksimchuk K. R., Lum D., Welch J. L., Arnold J. J., Cameron C. E., Boehr D. D.. 2012; Motif D of viral RNA-dependent RNA polymerases determines efficiency and fidelity of nucleotide addition. Structure20:1519–1527 [CrossRef][PubMed]
    [Google Scholar]
  59. Zmurko J., Marques R. E., Schols D., Verbeken E., Kaptein S. J., Neyts J.. 2016; The viral polymerase inhibitor 7-deaza-2′-C-methyladenosine is a potent inhibitor of in vitro Zika virus replication and delays disease progression in a robust mouse infection model. PLoS Negl Trop Dis10:e0004695 [CrossRef][PubMed]
    [Google Scholar]
  60. Zuur A. F., Ieno E. N., Elphick C. S.. 2010; A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol1:3–14 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000569
Loading
/content/journal/jgv/10.1099/jgv.0.000569
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error