1887

Abstract

Marburg virus (MARV) causes severe, often fatal, disease in humans and transient illness in rodents. Sequential passaging of MARV in guinea pigs resulted in selection of a lethal virus containing 4 aa changes. A D184N mutation in VP40 (VP40), which leads to a species-specific gain of viral fitness, and three mutations in the active site of viral RNA-dependent RNA polymerase L, which were investigated in the present study for functional significance in human and guinea pig cells. The transcription/replication activity of L mutants was strongly enhanced by a substitution at position 741 (S741C), and inhibited by other substitutions (D758A and A759D) in both species. The polymerase activity of L carrying the S741C substitution was eightfold higher in guinea pig cells than in human cells upon co-expression with VP40, suggesting that the additive effect of the two mutations provides MARV a replicative advantage in the new host.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000564
2016-10-13
2019-12-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/10/2494.html?itemId=/content/journal/jgv/10.1099/jgv.0.000564&mimeType=html&fmt=ahah

References

  1. Acharya M.. 2014; Ebola viral disease outbreak-2014: implications and pitfalls. Front Public Health2:263 [CrossRef][PubMed]
    [Google Scholar]
  2. Ackermann A., Staeheli P., Schneider U.. 2007; Adaptation of Borna disease virus to new host species attributed to altered regulation of viral polymerase activity. J Virol81:7933–7940 [CrossRef][PubMed]
    [Google Scholar]
  3. Becker S., Rinne C., Hofsäss U., Klenk H. D., Mühlberger E.. 1998; Interactions of Marburg virus nucleocapsid proteins. Virology249:406–417 [CrossRef][PubMed]
    [Google Scholar]
  4. Bharat T. A., Riches J. D., Kolesnikova L., Welsch S., Krähling V., Davey N., Parsy M. L., Becker S., Briggs J. A.. 2011; Cryo-electron tomography of Marburg virus particles and their morphogenesis within infected cells. PLoS Biol9:e1001196 [CrossRef][PubMed]
    [Google Scholar]
  5. Brown P. A., Lupini C., Catelli E., Clubbe J., Ricchizzi E., Naylor C. J.. 2011; A single polymerase (L) mutation in avian metapneumovirus increased virulence and partially maintained virus viability at an elevated temperature. J Gen Virol92:346–354 [CrossRef][PubMed]
    [Google Scholar]
  6. Dortmans J. C., Rottier P. J., Koch G., Peeters B. P.. 2011; Passaging of a Newcastle disease virus pigeon variant in chickens results in selection of viruses with mutations in the polymerase complex enhancing virus replication and virulence. J Gen Virol92:336–345 [CrossRef][PubMed]
    [Google Scholar]
  7. Ebihara H., Takada A., Kobasa D., Jones S., Neumann G., Theriault S., Bray M., Feldmann H., Kawaoka Y.. 2006; Molecular determinants of Ebola virus virulence in mice. PLoS Pathog2:e73 [CrossRef][PubMed]
    [Google Scholar]
  8. Feldmann H., Will C., Schikore M., Slenczka W., Klenk H. D.. 1991; Glycosylation and oligomerization of the spike protein of Marburg virus. Virology182:353–356 [CrossRef][PubMed]
    [Google Scholar]
  9. Fujii Y., Sakaguchi T., Kiyotani K., Huang C., Fukuhara N., Yoshida T.. 2002; Identification of mutations associated with attenuation of virulence of a field Sendai virus isolate by egg passage. Virus Genes25:189–193[PubMed][CrossRef]
    [Google Scholar]
  10. Hartman A. L., Towner J. S., Nichol S. T.. 2010; Ebola and marburg hemorrhagic fever. Clin Lab Med30:161–177 [CrossRef][PubMed]
    [Google Scholar]
  11. Heiden S., Grund C., Höper D., Mettenleiter T. C., Römer-Oberdörfer A.. 2014; Pigeon paramyxovirus type 1 variants with polybasic F protein cleavage site but strikingly different pathogenicity. Virus Genes49:502–506 [CrossRef][PubMed]
    [Google Scholar]
  12. Hoenen T., Jung S., Herwig A., Groseth A., Becker S.. 2010; Both matrix proteins of Ebola virus contribute to the regulation of viral genome replication and transcription. Virology403:56–66 [CrossRef][PubMed]
    [Google Scholar]
  13. Hoenen T., Shabman R. S., Groseth A., Herwig A., Weber M., Schudt G., Dolnik O., Basler C. F., Becker S., Feldmann H.. 2012; Inclusion bodies are a site of ebolavirus replication. J Virol86:11779–11788 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim S. H., Thu B. J., Skall H. F., Vendramin N., Evensen O.. 2014; A single amino acid mutation (I1012F) of the RNA polymerase of marine viral hemorrhagic septicemia virus changes in vitro virulence to rainbow trout gill epithelial cells. J Virol88:7189–7198 [CrossRef][PubMed]
    [Google Scholar]
  15. Koehler A., Kolesnikova L., Welzel U., Schudt G., Herwig A., Becker S.. 2015; A single amino acid change in the Marburg virus matrix protein VP40 provides a replicative advantage in a species-specific manner. J Virol90:1444–1454 [CrossRef]
    [Google Scholar]
  16. Liang B., Li Z., Jenni S., Rahmeh A. A., Morin B. M., Grant T., Grigorieff N., Harrison S. C., Whelan S. P.. 2015; Structure of the L protein of vesicular stomatitis virus from electron cryomicroscopy. Cell162:314–327 [CrossRef][PubMed]
    [Google Scholar]
  17. Lofts L. L., Ibrahim M. S., Negley D. L., Hevey M. C., Schmaljohn A. L.. 2007; Genomic differences between guinea pig lethal and nonlethal Marburg virus variants. J Infect Dis196:S305–S312 [CrossRef][PubMed]
    [Google Scholar]
  18. Magoffin D. E., Halpin K., Rota P. A., Wang L. F.. 2007; Effects of single amino acid substitutions at the E residue in the conserved GDNE motif of the Nipah virus polymerase (L) protein. Arch Virol152:827–832 [CrossRef][PubMed]
    [Google Scholar]
  19. Malur A. G., Gupta N. K., De Bishnu P., Banerjee A. K.. 2002; Analysis of the mutations in the active site of the RNA-dependent RNA polymerase of human parainfluenza virus type 3 (HPIV3). Gene Expr10:93–100[PubMed]
    [Google Scholar]
  20. Mühlberger E., Sanchez A., Randolf A., Will C., Kiley M. P., Klenk H. D., Feldmann H.. 1992; The nucleotide sequence of the L gene of Marburg virus, a filovirus: homologies with paramyxoviruses and rhabdoviruses. Virology187:534–547 [CrossRef][PubMed]
    [Google Scholar]
  21. Mühlberger E., Lötfering B., Klenk H. D., Becker S.. 1998; Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J Virol72:8756–8764[PubMed]
    [Google Scholar]
  22. Mühlberger E., Weik M., Volchkov V. E., Klenk H. D., Becker S.. 1999; Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems. J Virol73:2333–2342[PubMed]
    [Google Scholar]
  23. Noton S. L., Deflubé L. R., Tremaglio C. Z., Fearns R.. 2012; The respiratory syncytial virus polymerase has multiple RNA synthesis activities at the promoter. PLoS Pathog8:e1002980 [CrossRef][PubMed]
    [Google Scholar]
  24. Poch O., Blumberg B. M., Bougueleret L., Tordo N.. 1990; Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J Gen Virol71:1153–1162 [CrossRef][PubMed]
    [Google Scholar]
  25. Schnell M. J., Conzelmann K. K.. 1995; Polymerase activity of in vitro mutated rabies virus L protein. Virology214:522–530 [CrossRef][PubMed]
    [Google Scholar]
  26. Sidhu M. S., Menonna J. P., Cook S. D., Dowling P. C., Udem S. A.. 1993; Canine distemper virus L gene: sequence and comparison with related viruses. Virology193:50–65 [CrossRef][PubMed]
    [Google Scholar]
  27. Sleat D. E., Banerjee A. K.. 1993; Transcriptional activity and mutational analysis of recombinant vesicular stomatitis virus RNA polymerase. J Virol67:1334–1339[PubMed]
    [Google Scholar]
  28. Smallwood S., Hövel T., Neubert W. J., Moyer S. A.. 2002; Different substitutions at conserved amino acids in domains II and III in the Sendai L RNA polymerase protein inactivate viral RNA synthesis. Virology304:135–145 [CrossRef][PubMed]
    [Google Scholar]
  29. Stec D. S., Hill M. G., Collins P. L.. 1991; Sequence analysis of the polymerase L gene of human respiratory syncytial virus and predicted phylogeny of nonsegmented negative-strand viruses. Virology183:273–287 [CrossRef][PubMed]
    [Google Scholar]
  30. Terril L. A., Clemons D. J.. 1998; The Laboratory Guinea Pig Boca Raton, Florida: CRC Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000564
Loading
/content/journal/jgv/10.1099/jgv.0.000564
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error