1887

Abstract

After successful infection and replication of its genome in the nucleus of the host cell, influenza A virus faces several challenges before newly assembled viral particles can bud off from the plasma membrane, giving rise to a new infectious virus. The viral ribonucleoprotein (vRNP) complexes need to exit from the nucleus and be transported to the virus assembly sites at the plasma membrane. Moreover, they need to be bundled to ensure the incorporation of precisely one of each of the eight viral genome segments into newly formed viral particles. Similarly, viral envelope glycoproteins and other viral structural proteins need to be targeted to virus assembly sites for viral particles to form and bud off from the plasma membrane. During all these steps influenza A virus heavily relies on a tight interplay with its host, exploiting host-cell proteins for its own purposes. In this review, we summarize current knowledge on late stages of the influenza virus replication cycle, focusing on the role of host-cell proteins involved in this process.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000562
2016-09-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/9/2058.html?itemId=/content/journal/jgv/10.1099/jgv.0.000562&mimeType=html&fmt=ahah

References

  1. Akarsu H., Burmeister W. P., Petosa C., Petit I., Müller C. W., Ruigrok R. W., Baudin F..( 2003;). Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein (NEP/NS2). . EMBO J 22: 4646–4655. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ali A., Avalos R. T., Ponimaskin E., Nayak D. P..( 2000;). Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M1 protein. . J Virol 74: 8709–8719.[PubMed] [Crossref]
    [Google Scholar]
  3. Allen R. D..( 1995;). Membrane tubulation and proton pumps. . Protoplasma 189: 1–8.[Crossref]
    [Google Scholar]
  4. Amorim M. J., Bruce E. A., Read E. K., Foeglein A., Mahen R., Stuart A. D., Digard P..( 2011;). A Rab11- and microtubule-dependent mechanism for cytoplasmic transport of influenza A virus viral RNA. . J Virol 85: 4143–4156. [CrossRef] [PubMed]
    [Google Scholar]
  5. Avilov S. V, Moisy D., Munier S., Schraidt O., Naffakh N., Cusack S..( 2012a;). Replication-competent influenza A virus that encodes a split-green fluorescent protein-tagged PB2 polymerase subunit allows live-cell imaging of the virus life cycle. . J Virol 86: 1433–1448.[Crossref]
    [Google Scholar]
  6. Avilov S. V., Moisy D., Naffakh N., Cusack S..( 2012b;). Influenza A virus progeny vRNP trafficking in live infected cells studied with the virus-encoded fluorescently tagged PB2 protein. . Vaccine 30: 7411–7417. [CrossRef]
    [Google Scholar]
  7. Babcock H. P., Chen C., Zhuang X..( 2004;). Using single-particle tracking to study nuclear trafficking of viral genes. . Biophys J 87: 2749–2758. [CrossRef] [PubMed]
    [Google Scholar]
  8. Barman S., Nayak D. P..( 2000;). Analysis of the transmembrane domain of influenza virus neuraminidase, a type II transmembrane glycoprotein, for apical sorting and raft association. . J Virol 74: 6538–6545.[PubMed] [Crossref]
    [Google Scholar]
  9. Barman S., Adhikary L., Chakrabarti A. K., Bernas C., Kawaoka Y., Nayak D. P..( 2004;). Role of transmembrane domain and cytoplasmic tail amino acid sequences of influenza a virus neuraminidase in raft association and virus budding. . J Virol 78: 5258–5269.[PubMed] [Crossref]
    [Google Scholar]
  10. Baudin F., Petit I., Weissenhorn W., Ruigrok R. W..( 2001;). In vitro dissection of the membrane and RNP binding activities of influenza virus M1 protein. . Virology 281: 102–108. [CrossRef] [PubMed]
    [Google Scholar]
  11. Berri F., Haffar G., V. B., Sadewasser A., Paki K., Lina B., Wolff T., Riteau B..( 2014;). Annexin V incorporated into influenza virus particles inhibits gamma interferon signaling and promotes viral replication. . J Virol 88: 11215–11228. [CrossRef] [PubMed]
    [Google Scholar]
  12. Bialas K. M., Bussey K. A., Stone R. L., Takimoto T..( 2014;). Specific nucleoprotein residues affect influenza virus morphology. . J Virol 88: 2227–2234. [CrossRef] [PubMed]
    [Google Scholar]
  13. Bourmakina S. V., García-Sastre A..( 2003;). Reverse genetics studies on the filamentous morphology of influenza A virus. . J Gen Virol 84: 517–527. [CrossRef] [PubMed]
    [Google Scholar]
  14. Brooke C. B., Ince W. L., Wrammert J., Ahmed R., Wilson P. C., Bennink J. R., Yewdell J. W..( 2013;). Most influenza a virions fail to express at least one essential viral protein. . J Virol 87: 3155–3162. [CrossRef] [PubMed]
    [Google Scholar]
  15. Bruce E. A., Digard P., Stuart A. D..( 2010;). The Rab11 pathway is required for influenza A virus budding and filament formation. . J Virol 84: 5848–5859. [CrossRef] [PubMed]
    [Google Scholar]
  16. Bruce E. A., Stuart A., McCaffrey M. W., Digard P..( 2012;). Role of the Rab11 pathway in negative-strand virus assembly. . Biochem Soc Trans 40: 1409–1415. [CrossRef] [PubMed]
    [Google Scholar]
  17. Brunotte L., Flies J., Bolte H., Reuther P., Vreede F., Schwemmle M..( 2014;). The nuclear export protein of H5N1 influenza A viruses recruits Matrix 1 (M1) protein to the viral ribonucleoprotein to mediate nuclear export. . J Biol Chem 289: 20067–20077. [CrossRef] [PubMed]
    [Google Scholar]
  18. Bui M., Wills E. G., Helenius A., Whittaker G. R..( 2000;). Role of the influenza virus M1 protein in nuclear export of viral ribonucleoproteins. . J Virol 74: 1781–1786. [CrossRef] [PubMed]
    [Google Scholar]
  19. Böttcher-Friebertshäuser E., Klenk H. D., Garten W..( 2013;). Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium. . Pathog Dis 69: 87–100. [CrossRef] [PubMed]
    [Google Scholar]
  20. Calder L. J., Wasilewski S., Berriman J. A., Rosenthal P. B..( 2010;). Structural organization of a filamentous influenza A virus. . Proc Natl Acad Sci U S A 107: 10685–10690. [CrossRef] [PubMed]
    [Google Scholar]
  21. Cantin R., Méthot S., Tremblay M. J..( 2005;). Plunder and stowaways: incorporation of cellular proteins by enveloped viruses. . J Virol 79: 6577–6587. [CrossRef] [PubMed]
    [Google Scholar]
  22. Cao S., Liu X., Yu M., Li J., Jia X., Bi Y., Sun L., Gao G. F., Liu W..( 2012;). A nuclear export signal in the matrix protein of Influenza A virus is required for efficient virus replication. . J Virol 86: 4883–4891. [CrossRef] [PubMed]
    [Google Scholar]
  23. Carrasco M., Amorim M. J., Digard P..( 2004;). Lipid raft-dependent targeting of the influenza A virus nucleoprotein to the apical plasma membrane. . Traffic 5: 979–992. [CrossRef] [PubMed]
    [Google Scholar]
  24. Chazal N., Gerlier D..( 2003;). Virus entry, assembly, budding, and membrane rafts. . Microbiol Mol Biol Rev 67: 226–237, table of contents.[PubMed] [Crossref]
    [Google Scholar]
  25. Chen B. J., Takeda M., Lamb R. A..( 2005;). Influenza virus hemagglutinin (H3 subtype) requires palmitoylation of its cytoplasmic tail for assembly: M1 proteins of two subtypes differ in their ability to support assembly. . J Virol 79: 13673–13684. [CrossRef] [PubMed]
    [Google Scholar]
  26. Chen B. J., Leser G. P., Morita E., Lamb R. A..( 2007;). Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles. . J Virol 81: 7111–7123. [CrossRef] [PubMed]
    [Google Scholar]
  27. Chen B. J., Leser G. P., Jackson D., Lamb R. A..( 2008;). The influenza virus M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly at the site of virus budding. . J Virol 82: 10059–10070. [CrossRef] [PubMed]
    [Google Scholar]
  28. Chlanda P., Schraidt O., Kummer S., Riches J., Oberwinkler H., Prinz S., Kräusslich H. G., Briggs J. A..( 2015;). Structural analysis of the roles of influenza a virus membrane-associated proteins in assembly and morphology. . J Virol 89: 8957–8966. [CrossRef] [PubMed]
    [Google Scholar]
  29. Choppin P. W..( 1963;). On the emergence of influenza virus filaments from host cells. . Virology 21: 278–281. [CrossRef]
    [Google Scholar]
  30. Chou Y. Y., Vafabakhsh R., Doğanay S., Gao Q., Ha T., Palese P..( 2012;). One influenza virus particle packages eight unique viral RNAs as shown by FISH analysis. . Proc Natl Acad Sci U S A 109: 9101–9106. [CrossRef] [PubMed]
    [Google Scholar]
  31. Chou Y. Y., Heaton N. S., Gao Q., Palese P., Singer R. H., Singer R., Lionnet T..( 2013;). Colocalization of different influenza viral RNA segments in the cytoplasm before viral budding as shown by single-molecule sensitivity FISH analysis. . PLoS Pathog 9: e1003358. [CrossRef] [PubMed]
    [Google Scholar]
  32. Chua M. A., Schmid S., Perez J. T., Langlois R. A., Tenoever B. R..( 2013;). Influenza A virus utilizes suboptimal splicing to coordinate the timing of infection. . Cell Rep 3: 23–29. [CrossRef] [PubMed]
    [Google Scholar]
  33. Ciampor F., Bayley P. M., Nermut M. V., Hirst E. M., Sugrue R. J., Hay A. J..( 1992;). Evidence that the amantadine-induced, M2-mediated conversion of influenza A virus hemagglutinin to the low pH conformation occurs in an acidic trans Golgi compartment. . Virology 188: 14–24. [CrossRef] [PubMed]
    [Google Scholar]
  34. Cros J. F., Palese P..( 2003;). Trafficking of viral genomic RNA into and out of the nucleus: influenza, Thogoto and Borna disease viruses. . Virus Res 95: 3–12.[Crossref]
    [Google Scholar]
  35. de Lucas S., Peredo J., Marión R. M., Sánchez C., Ortín J..( 2010;). Human Staufen1 protein interacts with influenza virus ribonucleoproteins and is required for efficient virus multiplication. . J Virol 84: 7603–7612. [CrossRef] [PubMed]
    [Google Scholar]
  36. Demirov D., Gabriel G., Schneider C., Hohenberg H., Ludwig S..( 2012;). Interaction of influenza A virus matrix protein with RACK1 is required for virus release. . Cell Microbiol 14: 774–789. [CrossRef] [PubMed]
    [Google Scholar]
  37. Deom C. M., Schulze I. T..( 1985;). Oligosaccharide composition of an influenza virus hemagglutinin with host-determined binding properties. . J Biol Chem 260: 14771–14774.[PubMed]
    [Google Scholar]
  38. Domingues P., Golebiowski F., Tatham M. H., Lopes A. M., Taggart A., Hay R. T., Hale B. G..( 2015;). Global reprogramming of host SUMOylation during influenza virus infection. . Cell Rep 13: 1467–1480. [CrossRef] [PubMed]
    [Google Scholar]
  39. Doms R. W., Lamb R. A., Rose J. K., Helenius A..( 1993;). Folding and assembly of viral membrane proteins. . Virology 193: 545–562. [CrossRef] [PubMed]
    [Google Scholar]
  40. Dos Santos Afonso E., Escriou N., Leclercq I., van der Werf S., Naffakh N..( 2005;). The generation of recombinant influenza A viruses expressing a PB2 fusion protein requires the conservation of a packaging signal overlapping the coding and noncoding regions at the 5′ end of the PB2 segment. . Virology 341: 34–46. [CrossRef] [PubMed]
    [Google Scholar]
  41. Duhaut S. D., McCauley J. W..( 1996;). Defective RNAs inhibit the assembly of influenza virus genome segments in a segment-specific manner. . Virology 216: 326–337. [CrossRef] [PubMed]
    [Google Scholar]
  42. Duhaut S. D., Dimmock N. J..( 2002;). Defective segment 1 RNAs that interfere with production of infectious influenza A virus require at least 150 nucleotides of 5′ sequence: evidence from a plasmid-driven system. . J Gen Virol 83: 403–411. [CrossRef] [PubMed]
    [Google Scholar]
  43. Eisfeld A. J., Kawakami E., Watanabe T., Neumann G., Kawaoka Y..( 2011a;). RAB11A is essential for transport of the influenza virus genome to the plasma membrane. . J Virol 85: 6117–6126.[Crossref]
    [Google Scholar]
  44. Eisfeld A. J., Neumann G., Kawaoka Y..( 2011b;). Human immunodeficiency virus rev-binding protein is essential for influenza a virus replication and promotes genome trafficking in late-stage infection. . J Virol 85: 9588–9598.[Crossref]
    [Google Scholar]
  45. Eisfeld A. J., Neumann G., Kawaoka Y..( 2015;). At the centre: influenza A virus ribonucleoproteins. . Nat Rev Microbiol 13: 28–41. [CrossRef] [PubMed]
    [Google Scholar]
  46. Elleman C. J., Barclay W. S..( 2004;). The M1 matrix protein controls the filamentous phenotype of influenza A virus. . Virology 321: 144–153. [CrossRef] [PubMed]
    [Google Scholar]
  47. Elster C., Larsen K., Gagnon J., Ruigrok R. W., Baudin F..( 1997;). Influenza virus M1 protein binds to RNA through its nuclear localization signal. . J Gen Virol 78: 1589–1596. [CrossRef] [PubMed]
    [Google Scholar]
  48. Elton D., Simpson-Holley M., Archer K., Medcalf L., Hallam R., McCauley J., Digard P..( 2001;). Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. . J Virol 75: 408–419. [CrossRef] [PubMed]
    [Google Scholar]
  49. Essere B., Yver M., Gavazzi C., Terrier O., Isel C., Fournier E., Giroux F., Textoris J., Julien T. et al.( 2013;). Critical role of segment-specific packaging signals in genetic reassortment of influenza A viruses. . Proc Natl Acad Sci U S A 110: E38403848. [CrossRef] [PubMed]
    [Google Scholar]
  50. Falcón A. M., Fortes P., Marión R. M., Beloso A., Ortín J..( 1999;). Interaction of influenza virus NS1 protein and the human homologue of Staufen in vivo and in vitro. . Nucleic Acids Res 27: 2241–2247.[PubMed] [Crossref]
    [Google Scholar]
  51. Fournier E., Moules V., Essere B., Paillart J. C., Sirbat J. D., Cavalier A., Rolland J. P., Thomas D, Lina B. et al.( 2012a;). Interaction network linking the human H3N2 influenza A virus genomic RNA segments. . Vaccine 30: 7359–7367.[Crossref]
    [Google Scholar]
  52. Fournier E., Moules V., Essere B., Paillart J. C., Sirbat J. D., Isel C., Cavalier A., Rolland J. P, Thomas D. et al.( 2012b;). A supramolecular assembly formed by influenza A virus genomic RNA segments. . Nucleic Acids Res 40: 2197–2209.[Crossref]
    [Google Scholar]
  53. Franke E. K., Yuan H. E., Luban J..( 1994;). Specific incorporation of cyclophilin A into HIV-1 virions. . Nature 372: 359–362. [CrossRef] [PubMed]
    [Google Scholar]
  54. Fujii Y., Goto H., Watanabe T., Yoshida T., Kawaoka Y..( 2003;). Selective incorporation of influenza virus RNA segments into virions. . Proc Natl Acad Sci U S A 100: 2002–2007. [CrossRef] [PubMed]
    [Google Scholar]
  55. Fujii K., Ozawa M., Iwatsuki-Horimoto K., Horimoto T., Kawaoka Y..( 2009;). Incorporation of influenza A virus genome segments does not absolutely require wild-type sequences. . J Gen Virol 90: 1734–1740. [CrossRef] [PubMed]
    [Google Scholar]
  56. Fukuda M., Asano S., Nakamura T., Adachi M., Yoshida M., Yanagida M., Nishida E..( 1997;). CRM1 is responsible for intracellular transport mediated by the nuclear export signal. . Nature 390: 308–311. [CrossRef] [PubMed]
    [Google Scholar]
  57. Gao Q., Chou Y. Y., Doğanay S., Vafabakhsh R., Ha T., Palese P..( 2012;). The influenza A virus PB2, PA, NP, and M segments play a pivotal role during genome packaging. . J Virol 86: 7043–7051. [CrossRef] [PubMed]
    [Google Scholar]
  58. Gao S., Wu J., Liu R. Y., Li J., Song L., Teng Y., Sheng C., Liu D., Yao C. et al.( 2015;). Interaction of NS2 with AIMP2 facilitates the switch from ubiquitination to SUMOylation of M1 in influenza A virus-infected cells. . J Virol 89: 300–311. [CrossRef] [PubMed]
    [Google Scholar]
  59. Gavazzi C., Isel C., Fournier E., Moules V., Cavalier A., Thomas D., Lina B., Marquet R..( 2013;). An in vitro network of intermolecular interactions between viral RNA segments of an avian H5N2 influenza A virus: comparison with a human H3N2 virus. . Nucleic Acids Res 41: 1241–1254. [CrossRef] [PubMed]
    [Google Scholar]
  60. Gerber M., Isel C., Moules V., Marquet R..( 2014;). Selective packaging of the influenza A genome and consequences for genetic reassortment. . Trends Microbiol 22: 446–455. [CrossRef] [PubMed]
    [Google Scholar]
  61. Gerl M. J., Sampaio J. L., Urban S., Kalvodova L., Verbavatz J. M., Binnington B., Lindemann D., Lingwood C. A, Shevchenko A. et al.( 2012;). Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical. . Membrane. J Cell Biol 196: 213–221.[Crossref]
    [Google Scholar]
  62. Gog J. R., Afonso Edos S., Dalton R. M., Leclercq I., Tiley L., Elton D., von Kirchbach J. C., Naffakh N., Escriou N. et al.( 2007;). Codon conservation in the influenza A virus genome defines RNA packaging signals. . Nucleic Acids Res 35: 1897–1907. [CrossRef] [PubMed]
    [Google Scholar]
  63. Gorai T., Goto H., Noda T., Watanabe T., Kozuka-Hata H., Oyama M., Takano R., Neumann G., Watanabe S. et al.( 2012;). F1Fo-ATPase, F-type proton-translocating ATPase, at the plasma membrane is critical for efficient influenza virus budding. . Proc Natl Acad Sci U S A 109: 4615–4620. [CrossRef] [PubMed]
    [Google Scholar]
  64. Grambas S., Hay A. J..( 1992;). Maturation of influenza A virus hemagglutinin – estimates of the pH encountered during transport and its regulation by the M2 protein. . Virology 190: 11–18. [CrossRef] [PubMed]
    [Google Scholar]
  65. Grantham M. L., Stewart S. M., Lalime E. N., Pekosz A..( 2010;). Tyrosines in the influenza A virus M2 protein cytoplasmic tail are critical for production of infectious virus particles. . J Virol 84: 8765–8776. [CrossRef] [PubMed]
    [Google Scholar]
  66. Griffin J. A., Basak S., Compans R. W..( 1983;). Effects of hexose starvation and the role of sialic acid in influenza virus release. . Virology 125: 324–334.[PubMed] [Crossref]
    [Google Scholar]
  67. Harris A., Forouhar F., Qiu S., Sha B., Luo M..( 2001;). The crystal structure of the influenza matrix protein M1 at neutral pH: M1-M1 protein interfaces can rotate in the oligomeric structures of M1. . Virology 289: 34–44. [CrossRef] [PubMed]
    [Google Scholar]
  68. Harris A., Cardone G., Winkler D. C., Heymann J. B., Brecher M., White J. M., Steven A. C..( 2006;). Influenza virus pleiomorphy characterized by cryoelectron tomography. . Proc Natl Acad Sci U S A 103: 19123–19127. [CrossRef] [PubMed]
    [Google Scholar]
  69. He J., Sun E., Bujny M. V., Kim D., Davidson M. W., Zhuang X..( 2013;). Dual function of CD81 in influenza virus uncoating and budding. . PLoS Pathog 9: e1003701. [CrossRef] [PubMed]
    [Google Scholar]
  70. Hilsch M., Goldenbogen B., Sieben C., Höfer C. T., Rabe J. P., Klipp E., Herrmann A., Chiantia S..( 2014;). Influenza A matrix protein M1 multimerizes upon binding to lipid membranes. . Biophys J 107: 912–923. [CrossRef] [PubMed]
    [Google Scholar]
  71. Huang S., Chen J., Chen Q., Wang H., Yao Y., Chen J., Chen Z..( 2013;). A second CRM1-dependent nuclear export signal in the influenza A virus NS2 protein contributes to the nuclear export of viral ribonucleoproteins. . J Virol 87: 767–778. [CrossRef] [PubMed]
    [Google Scholar]
  72. Huarte M., Sanz-Ezquerro J. J., Roncal F., Ortín J., Nieto A..( 2001;). PA subunit from influenza virus polymerase complex interacts with a cellular protein with homology to a family of transcriptional activators. . J Virol 75: 8597–8604.[PubMed] [Crossref]
    [Google Scholar]
  73. Hughey P. G., Compans R. W., Zebedee S. L., Lamb R. A..( 1992;). Expression of the influenza A virus M2 protein is restricted to apical surfaces of polarized epithelial cells. . J Virol 66: 5542–5552.[PubMed]
    [Google Scholar]
  74. Hutchinson E. C., Curran M. D., Read E. K., Gog J. R., Digard P..( 2008;). Mutational analysis of cis-acting RNA signals in segment 7 of influenza A virus. . J Virol 82: 11869–11879. [CrossRef] [PubMed]
    [Google Scholar]
  75. Hutchinson E. C., Wise H. M., Kudryavtseva K., Curran M. D., Digard P..( 2009;). Characterisation of influenza A viruses with mutations in segment 5 packaging signals. . Vaccine 27: 6270–6275. [CrossRef] [PubMed]
    [Google Scholar]
  76. Hutchinson E. C., von Kirchbach J. C., Gog J. R., Digard P..( 2010;). Genome packaging in influenza A virus. . J Gen Virol 91: 313–328. [CrossRef] [PubMed]
    [Google Scholar]
  77. Hutchinson E. C., Fodor E..( 2013;). Transport of the influenza virus genome from nucleus to nucleus. . Viruses 5: 2424–2446. [CrossRef] [PubMed]
    [Google Scholar]
  78. Hutchinson E. C., Charles P. D., Hester S. S., Thomas B., Trudgian D., Martínez-Alonso M., Fodor E..( 2014;). Conserved and host-specific features of influenza virion architecture. . Nat Commun 5: 4816. [CrossRef] [PubMed]
    [Google Scholar]
  79. Inagaki A., Goto H., Kakugawa S., Ozawa M., Kawaoka Y..( 2012;). Competitive incorporation of homologous gene segments of influenza A virus into virions. . J Virol 86: 10200–10202.[Crossref]
    [Google Scholar]
  80. Iwatsuki-Horimoto K., Horimoto T., Fujii Y., Kawaoka Y..( 2004;). Generation of influenza A virus NS2 (NEP) mutants with an altered nuclear export signal sequence. . J Virol 78: 10149–10155. [CrossRef] [PubMed]
    [Google Scholar]
  81. Iwatsuki-Horimoto K., Horimoto T., Noda T., Kiso M., Maeda J., Watanabe S., Muramoto Y., Fujii K., Kawaoka Y..( 2006;). The cytoplasmic tail of the influenza A virus M2 protein plays a role in viral assembly. . J Virol 80: 5233–5240. [CrossRef] [PubMed]
    [Google Scholar]
  82. Jin H., Leser G. P., Zhang J., Lamb R. A..( 1997;). Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. . EMBO J 16: 1236–1247. [CrossRef] [PubMed]
    [Google Scholar]
  83. Jo S., Kawaguchi A., Takizawa N., Morikawa Y., Momose F., Nagata K..( 2010;). Involvement of vesicular trafficking system in membrane targeting of the progeny influenza virus genome. . Microbes Infect 12: 1079–1084. [CrossRef] [PubMed]
    [Google Scholar]
  84. Kawaguchi A., Matsumoto K., Nagata K..( 2012;). YB-1 functions as a porter to lead influenza virus ribonucleoprotein complexes to microtubules. . J Virol 86: 11086–11095. [CrossRef] [PubMed]
    [Google Scholar]
  85. Keller P., Simons K..( 1998;). Cholesterol is required for surface transport of influenza virus hemagglutinin. . J Cell Biol 140: 1357–1367.[PubMed] [Crossref]
    [Google Scholar]
  86. Kolesnikova L., Heck S., Matrosovich T., Klenk H. D., Becker S., Matrosovich M..( 2013;). Influenza virus budding from the tips of cellular microvilli in differentiated human airway epithelial cells. . J Gen Virol 94: 971–976. [CrossRef] [PubMed]
    [Google Scholar]
  87. Kundu A., Avalos R. T., Sanderson C. M., Nayak D. P..( 1996;). Transmembrane domain of influenza virus neuraminidase, a type II protein, possesses an apical sorting signal in polarized MDCK cells. . J Virol 70: 6508–6515.[PubMed]
    [Google Scholar]
  88. Lai J. C., Chan W. W., Kien F., Nicholls J. M., Peiris J. S., Garcia J. M..( 2010;). Formation of virus-like particles from human cell lines exclusively expressing influenza neuraminidase. . J Gen Virol 91: 2322–2330. [CrossRef] [PubMed]
    [Google Scholar]
  89. Lakdawala S. S., Wu Y., Wawrzusin P., Kabat J., Broadbent A. J., Lamirande E. W., Fodor E., Altan-Bonnet N., Shroff H. et al.( 2014;). Influenza A virus assembly intermediates fuse in the cytoplasm. . PLoS Pathog 10: e1003971. [CrossRef] [PubMed]
    [Google Scholar]
  90. LeBouder F., Morello E., Rimmelzwaan G. F., Bosse F., Péchoux C., Delmas B., Riteau B..( 2008;). Annexin II incorporated into influenza virus particles supports virus replication by converting plasminogen into plasmin. . J Virol 82: 6820–6828. [CrossRef] [PubMed]
    [Google Scholar]
  91. Leser G. P., Lamb R. A..( 2005;). Influenza virus assembly and budding in raft-derived microdomains: a quantitative analysis of the surface distribution of HA, NA and M2 proteins. . Virology 342: 215–227. [CrossRef] [PubMed]
    [Google Scholar]
  92. Liang Y., Hong Y., Parslow T. G..( 2005;). cis-Acting packaging signals in the influenza virus PB1, PB2 and PA genomic RNA segments. . J Virol 79: 10348–10355. [CrossRef] [PubMed]
    [Google Scholar]
  93. Lin S., Naim H. Y., Rodriguez A. C., Roth M. G..( 1998;). Mutations in the middle of the transmembrane domain reverse the polarity of transport of the influenza virus hemagglutinin in MDCK epithelial cells. . J Cell Biol 142: 51–57.[Crossref]
    [Google Scholar]
  94. Ma K., Roy A. M., Whittaker G. R..( 2001;). Nuclear export of influenza virus ribonucleoproteins: identification of an export intermediate at the nuclear periphery. . Virology 282: 215–220. [CrossRef] [PubMed]
    [Google Scholar]
  95. Mangeat B., Turelli P., Caron G., Friedli M., Perrin L., Trono D..( 2003;). Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. . Nature 424: 99–103. [CrossRef] [PubMed]
    [Google Scholar]
  96. Marión R. M., Fortes P., Beloso A., Dotti C., Ortín J..( 1999;). A human sequence homologue of Staufen is an RNA-binding protein that is associated with polysomes and localizes to the rough endoplasmic reticulum. . Mol Cell Biol 19: 2212–2219.[PubMed] [Crossref]
    [Google Scholar]
  97. Marsh G. A., Hatami R., Palese P..( 2007;). Specific residues of the influenza A virus hemagglutinin viral RNA are important for efficient packaging into budding virions. . J Virol 81: 9727–9736. [CrossRef] [PubMed]
    [Google Scholar]
  98. Marsh G. A., Rabadán R., Levine A. J., Palese P..( 2008;). Highly conserved regions of influenza a virus polymerase gene segments are critical for efficient viral RNA packaging. . J Virol 82: 2295–2304. [CrossRef] [PubMed]
    [Google Scholar]
  99. Marshall N., Priyamvada L., Ende Z., Steel J., Lowen A. C..( 2013;). Influenza virus reassortment occurs with high frequency in the absence of segment mismatch. . PLoS Pathog 9: e1003421. [CrossRef] [PubMed]
    [Google Scholar]
  100. Martin K., Helenius A..( 1991;). Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. . Cell 67: 117–130.[PubMed] [Crossref]
    [Google Scholar]
  101. McCown M. F., Pekosz A..( 2005;). The influenza A virus M2 cytoplasmic tail is required for infectious virus production and efficient genome packaging. . J Virol 79: 3595–3605. [CrossRef] [PubMed]
    [Google Scholar]
  102. Momose F., Kikuchi Y., Komase K., Morikawa Y..( 2007;). Visualization of microtubule-mediated transport of influenza viral progeny ribonucleoprotein. . Microbes Infect 9: 1422–1433. [CrossRef] [PubMed]
    [Google Scholar]
  103. Momose F., Sekimoto T., Ohkura T., Jo S., Kawaguchi A., Nagata K., Morikawa Y..( 2011;). Apical transport of influenza A virus ribonucleoprotein requires Rab11-positive recycling endosome. . PLoS One 6: e21123. [CrossRef] [PubMed]
    [Google Scholar]
  104. Mosley V. M., Wyckoff R. W..( 1946;). Electron micrography of the virus of influenza. . Nature 157: 263. [CrossRef] [PubMed]
    [Google Scholar]
  105. Muramoto Y., Takada A., Fujii K., Noda T., Iwatsuki-Horimoto K., Watanabe S., Horimoto T., Kida H., Kawaoka Y..( 2006;). Hierarchy among viral RNA (vRNA) segments in their role in vRNA incorporation into influenza A virions. . J Virol 80: 2318–2325. [CrossRef] [PubMed]
    [Google Scholar]
  106. Nayak D. P., Balogun R. A., Yamada H., Zhou Z. H., Barman S..( 2009;). Influenza virus morphogenesis and budding. . Virus Res 143: 147–161. [CrossRef] [PubMed]
    [Google Scholar]
  107. Neumann G., Hughes M. T., Kawaoka Y..( 2000;). Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. . EMBO J 19: 6751–6758. [CrossRef] [PubMed]
    [Google Scholar]
  108. Noda T., Sagara H., Yen A., Takada A., Kida H., Cheng R. H., Kawaoka Y..( 2006;). Architecture of ribonucleoprotein complexes in influenza A virus particles. . Nature 439: 490–492. [CrossRef] [PubMed]
    [Google Scholar]
  109. Noda T., Sugita Y., Aoyama K., Hirase A., Kawakami E., Miyazawa A., Sagara H., Kawaoka Y..( 2012;). Three-dimensional analysis of ribonucleoprotein complexes in influenza A virus. . Nat Commun 3: 639. [CrossRef] [PubMed]
    [Google Scholar]
  110. Noton S. L., Medcalf E., Fisher D., Mullin A. E., Elton D., Digard P..( 2007;). Identification of the domains of the influenza A virus M1 matrix protein required for NP binding, oligomerization and incorporation into virions. . J Gen Virol 88: 2280–2290. [CrossRef] [PubMed]
    [Google Scholar]
  111. O'Neill R. E., Talon J., Palese P..( 1998;). The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. . EMBO J 17: 288–296. [CrossRef] [PubMed]
    [Google Scholar]
  112. Odagiri T., Tashiro M..( 1997;). Segment-specific noncoding sequences of the influenza virus genome RNA are involved in the specific competition between defective interfering RNA and its progenitor RNA segment at the virion assembly step. . J Virol 71: 2138–2145.[PubMed]
    [Google Scholar]
  113. Ohkura T., Momose F., Ichikawa R., Takeuchi K., Morikawa Y..( 2014;). Influenza A virus hemagglutinin and neuraminidase mutually accelerate their apical targeting through clustering of lipid rafts. . J Virol 88: 10039–10055. [CrossRef] [PubMed]
    [Google Scholar]
  114. Ozawa M., Maeda J., Iwatsuki-Horimoto K., Watanabe S., Goto H., Horimoto T., Kawaoka Y..( 2009;). Nucleotide sequence requirements at the 5′ end of the influenza A virus M RNA segment for efficient virus replication. . J Virol 83: 3384–3388. [CrossRef] [PubMed]
    [Google Scholar]
  115. Palese P., Tobita K., Ueda M., Compans R. W..( 1974;). Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. . Virology 61: 397–410.[PubMed] [Crossref]
    [Google Scholar]
  116. Palese P., Shaw M. L.. ( 2007;). Orthomyxoviridae: the viruses and their replication. . Fields Virology 2: 1647–1689.
    [Google Scholar]
  117. Paterson D., Fodor E..( 2012;). Emerging roles for the influenza A virus nuclear export protein (NEP). . PLoS Pathog 8: e1003019. [CrossRef] [PubMed]
    [Google Scholar]
  118. Pemberton L. F., Blobel G., Rosenblum J. S..( 1998;). Transport routes through the nuclear pore complex. . Curr Opin Cell Biol 10: 392–399.[PubMed] [Crossref]
    [Google Scholar]
  119. Pleschka S., Wolff T., Ehrhardt C., Hobom G., Planz O., Rapp U. R., Ludwig S..( 2001;). Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. . Nat Cell Biol 3: 301–305. [CrossRef] [PubMed]
    [Google Scholar]
  120. Richardson J. C., Akkina R. K..( 1991;). NS2 protein of influenza virus is found in purified virus and phosphorylated in infected cells. . Arch Virol 116: 69–80.[PubMed] [Crossref]
    [Google Scholar]
  121. Roberts K. L., Leser G. P., Ma C., Lamb R. A..( 2013;). The amphipathic helix of influenza A virus M2 protein is required for filamentous bud formation and scission of filamentous and spherical particles. . J Virol 87: 9973–9982. [CrossRef] [PubMed]
    [Google Scholar]
  122. Rodriguez A., Pérez-González A., Nieto A..( 2011;). Cellular human CLE/C14orf166 protein interacts with influenza virus polymerase and is required for viral replication. . J Virol 85: 12062–12066. [CrossRef] [PubMed]
    [Google Scholar]
  123. Rodriguez-Frandsen A., de Lucas S., Pérez-González A., Pérez-Cidoncha M., Roldan-Gomendio A., Pazo A., Marcos-Villar L., Landeras-Bueno S., Ortín J. et al.( 2016;). hCLE/C14orf166, a cellular protein required for viral replication, is incorporated into influenza virus particles. . Sci Rep 6: 20744. [CrossRef] [PubMed]
    [Google Scholar]
  124. Rossman J. S., Lamb R. A..( 2011;). Influenza virus assembly and budding. . Virology 411: 229–236. [CrossRef] [PubMed]
    [Google Scholar]
  125. Rossman J. S., Jing X., Leser G. P., Balannik V., Pinto L. H., Lamb R. A..( 2010a;). Influenza virus m2 ion channel protein is necessary for filamentous virion formation. . J Virol 84: 5078–5088.[Crossref]
    [Google Scholar]
  126. Rossman J. S., Jing X., Leser G. P., Lamb R. A..( 2010b;). Influenza virus M2 protein mediates ESCRT-independent membrane scission. . Cell 142: 902–913.[Crossref]
    [Google Scholar]
  127. Sakaguchi T., Leser G. P., Lamb R. A..( 1996;). The ion channel activity of the influenza virus M2 protein affects transport through the Golgi apparatus. . J Cell Biol 133: 733–747.[PubMed] [Crossref]
    [Google Scholar]
  128. Scheiffele P., Roth M. G., Simons K..( 1997;). Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. . EMBO J 16: 5501–5508. [CrossRef] [PubMed]
    [Google Scholar]
  129. Schmidt N. W., Mishra A., Wang J., DeGrado W. F., Wong G. C..( 2013;). Influenza virus A M2 protein generates negative Gaussian membrane curvature necessary for budding and scission. . J Am Chem Soc 135: 13710–13719. [CrossRef] [PubMed]
    [Google Scholar]
  130. Schmitt A. P., Lamb R. A..( 2005;). Influenza virus assembly and budding at the viral budozone. . Adv Virus Res 64: 383–416. [CrossRef] [PubMed]
    [Google Scholar]
  131. Schroeder C., Heider H., Möncke-Buchner E., Lin T. I..( 2005;). The influenza virus ion channel and maturation cofactor M2 is a cholesterol-binding protein. . Eur Biophys J 34: 52–66. [CrossRef] [PubMed]
    [Google Scholar]
  132. Seladi-Schulman J., Steel J., Lowen A. C..( 2013;). Spherical influenza viruses have a fitness advantage in embryonated eggs, while filament-producing strains are selected in vivo. . J Virol 87: 13343–13353. [CrossRef] [PubMed]
    [Google Scholar]
  133. Shapira S. D., Gat-Viks I., Shum B. O., Dricot A., de Grace M. M., Wu L., Gupta P. B., Hao T., Silver S. J. et al.( 2009;). A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. . Cell 139: 1255–1267. [CrossRef] [PubMed]
    [Google Scholar]
  134. Shaw M. L., Stone K. L., Colangelo C. M., Gulcicek E. E., Palese P..( 2008;). Cellular proteins in influenza virus particles. . PLoS Pathog 4: e1000085. [CrossRef] [PubMed]
    [Google Scholar]
  135. Sheehy A. M., Gaddis N. C., Choi J. D., Malim M. H..( 2002;). Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. . Nature 418: 646–650. [CrossRef] [PubMed]
    [Google Scholar]
  136. Shimizu T., Takizawa N., Watanabe K., Nagata K., Kobayashi N..( 2011;). Crucial role of the influenza virus NS2 (NEP) C-terminal domain in M1 binding and nuclear export of vRNP. . FEBS Lett 585: 41–46. [CrossRef] [PubMed]
    [Google Scholar]
  137. Simons K., Ikonen E..( 1997;). Functional rafts in cell membranes. . Nature 387: 569–572. [CrossRef] [PubMed]
    [Google Scholar]
  138. Simpson D. A., Lamb R. A..( 1992;). Alterations to influenza virus hemagglutinin cytoplasmic tail modulate virus infectivity. . J Virol 66: 790–803.[PubMed]
    [Google Scholar]
  139. Stertz S., Shaw M. L..( 2011;). Uncovering the global host cell requirements for influenza virus replication via RNAi screening. . Microbes Infect 13: 516–525. [CrossRef] [PubMed]
    [Google Scholar]
  140. Sun E., He J., Zhuang X..( 2013;). Dissecting the role of COPI complexes in influenza virus infection. . J Virol 87: 2673–2685. [CrossRef] [PubMed]
    [Google Scholar]
  141. Takeda M., Leser G. P., Russell C. J., Lamb R. A..( 2003;). Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. . Proc Natl Acad Sci U S A 100: 14610–14617. [CrossRef] [PubMed]
    [Google Scholar]
  142. Takizawa N., Kumakura M., Takeuchi K., Kobayashi N., Nagata K..( 2010;). Sorting of influenza A virus RNA genome segments after nuclear export. . Virology 401: 248–256. [CrossRef] [PubMed]
    [Google Scholar]
  143. Tchatalbachev S., Flick R., Hobom G..( 2001;). The packaging signal of influenza viral RNA molecules. . RNA 7: 979–989.[PubMed] [Crossref]
    [Google Scholar]
  144. Thaa B., Herrmann A., Veit M..( 2010;). Intrinsic cytoskeleton- dependent clustering of influenza virus M2 protein with hemagglutinin assessed by FLIM-FRET. . J Virol 84: 12445–12449. [CrossRef] [PubMed]
    [Google Scholar]
  145. Thaa B., Levental I., Herrmann A., Veit M..( 2011;). Intrinsic membrane association of the cytoplasmic tail of influenza virus M2 protein and lateral membrane sorting regulated by cholesterol binding and palmitoylation. . Biochem J 437: 389–397. [CrossRef] [PubMed]
    [Google Scholar]
  146. Thali M., Bukovsky A., Kondo E., Rosenwirth B., Walsh C. T., Sodroski J., Göttlinger H. G..( 1994;). Functional association of cyclophilin A with HIV-1 virions. . Nature 372: 363–365. [CrossRef] [PubMed]
    [Google Scholar]
  147. Tripathi S., Pohl M. O., Zhou Y., Rodriguez-Frandsen A., Wang G., Stein D. A., Moulton H. M., DeJesus P., Che J. et al.( 2015;). Meta- and Orthogonal integration of influenza ‘OMICs’ data defines a role for ubr4 in virus budding. . Cell Host Microbe 18: 723–735. [CrossRef] [PubMed]
    [Google Scholar]
  148. Tsukahara F., Maru Y..( 2004;). Identification of novel nuclear export and nuclear localization-related signals in human heat shock cognate protein 70. . J Biol Chem 279: 8867–8872. [CrossRef] [PubMed]
    [Google Scholar]
  149. Wang S., Li H., Chen Y., Wei H., Gao G. F., Liu H., Huang S., Chen J. L..( 2012;). Transport of influenza virus neuraminidase (NA) to host cell surface is regulated by ARHGAP21 and Cdc42 proteins. . J Biol Chem 287: 9804–9816. [CrossRef] [PubMed]
    [Google Scholar]
  150. Watanabe K., Takizawa N., Katoh M., Hoshida K., Kobayashi N., Nagata K..( 2001;). Inhibition of nuclear export of ribonucleoprotein complexes of influenza virus by leptomycin B. . Virus Res 77: 31–42. [CrossRef] [PubMed]
    [Google Scholar]
  151. Watanabe T., Watanabe S., Noda T., Fujii Y., Kawaoka Y..( 2003;). Exploitation of nucleic acid packaging signals to generate a novel influenza virus-based vector stably expressing two foreign genes. . J Virol 77: 10575–10583.[PubMed] [Crossref]
    [Google Scholar]
  152. Watanabe K., Fuse T., Asano I., Tsukahara F., Maru Y., Nagata K., Kitazato K., Kobayashi N..( 2006;). Identification of Hsc70 as an influenza virus matrix protein (M1) binding factor involved in the virus life cycle. . FEBS Lett 580: 5785–5790. [CrossRef] [PubMed]
    [Google Scholar]
  153. Watanabe K., Takizawa N., Noda S., Tsukahara F., Maru Y., Kobayashi N..( 2008;). Hsc70 regulates the nuclear export but not the import of influenza viral RNP: A possible target for the development of anti-influenza virus drugs. . Drug Discov Ther 2: 77–84.[PubMed]
    [Google Scholar]
  154. Watanabe K., Shimizu T., Noda S., Tsukahara F., Maru Y., Kobayashi N..( 2014a;). Nuclear export of the influenza virus ribonucleoprotein complex: Interaction of Hsc70 with viral proteins M1 and NS2. . FEBS Open Bio 4: 683–688.[Crossref]
    [Google Scholar]
  155. Watanabe T., Kawakami E., Shoemaker J. E., Lopes T. J., Matsuoka Y., Tomita Y., Kozuka-Hata H., Gorai T., Kuwahara T. et al.( 2014b;). Influenza virus-host interactome screen as a platform for antiviral drug development. . Cell Host Microbe 16: 795–805. [CrossRef]
    [Google Scholar]
  156. Whittaker G., Bui M., Helenius A..( 1996;). The role of nuclear import and export in influenza virus infection. . Trends Cell Biol 6: 67–71. [CrossRef] [PubMed]
    [Google Scholar]
  157. Wise H. M., Barbezange C., Jagger B. W., Dalton R. M., Gog J. R., Curran M. D., Taubenberger J. K., Anderson E. C., Digard P..( 2011;). Overlapping signals for translational regulation and packaging of influenza A virus segment 2. . Nucleic Acids Res 39: 7775–7790. [CrossRef] [PubMed]
    [Google Scholar]
  158. Wu C. Y., Jeng K. S., Lai M. M..( 2011;). The SUMOylation of matrix protein M1 modulates the assembly and morphogenesis of influenza A virus. . J Virol 85: 6618–6628. [CrossRef] [PubMed]
    [Google Scholar]
  159. Wurzer W. J., Planz O., Ehrhardt C., Giner M., Silberzahn T., Pleschka S., Ludwig S..( 2003;). Caspase 3 activation is essential for efficient influenza virus propagation. . EMBO J 22: 2717–2728. [CrossRef] [PubMed]
    [Google Scholar]
  160. Yasuda J., Nakada S., Kato A., Toyoda T., Ishihama A..( 1993;). Molecular assembly of influenza virus: association of the NS2 protein with virion matrix. . Virology 196: 249–255. [CrossRef] [PubMed]
    [Google Scholar]
  161. Ye Z., Liu T., Offringa D. P., McInnis J., Levandowski R. A..( 1999;). Association of influenza virus matrix protein with ribonucleoproteins. . J Virol 73: 7467–7473.[PubMed]
    [Google Scholar]
  162. Yu M., Liu X., Cao S., Zhao Z., Zhang K., Xie Q., Chen C., Gao S., Bi Y. et al.( 2012;). Identification and characterization of three novel nuclear export signals in the influenza A virus nucleoprotein. . J Virol 86: 4970–4980. [CrossRef] [PubMed]
    [Google Scholar]
  163. Zhang J., Leser G. P., Pekosz A., Lamb R. A..( 2000a;). The cytoplasmic tails of the influenza virus spike glycoproteins are required for normal genome packaging. . Virology 269: 325–334.[Crossref]
    [Google Scholar]
  164. Zhang J., Pekosz A., Lamb R. A..( 2000b;). Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. . J Virol 74: 4634–4644.[Crossref]
    [Google Scholar]
  165. Zhang K., Wang Z., Liu X., Yin C., Basit Z., Xia B., Liu W..( 2012;). Dissection of influenza A virus M1 protein: pH-dependent oligomerization of N-terminal domain and dimerization of C-terminal domain. . PLoS One 7: e37786. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000562
Loading
/content/journal/jgv/10.1099/jgv.0.000562
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error