1887

Abstract

Histone H4, a nucleosome subunit in eukaryotes, plays crucial roles in DNA package and regulation of gene expression through covalent modification. A viral histone H4 encoded in bracovirus (CpBV), a polydnavirus, is called . It is highly homologous to other histone H4 proteins excepting 38 extra amino acid residues in the N terminus. can form octamer with other histone subunits and alter host gene expression. In this study, was transiently expressed in a natural host () and its suppressive activity on host gene expression was evaluated by the suppressive subtractive hybridization (SSH) technique. The SSH targets down-regulated by were read with the 454 pyrosequencing platform and annotated using the genome of . The down-regulated genes (610 contigs) were annotated in most functional categories based on gene ontology. Among these SSH targets, 115 genes were functionally distinct, including two chromatin remodelling factors: a lysine-specific demethylase () and a chromatin remodelling complex [ (tch/ucrose on-ermentable)]. was highly expressed in all tested tissues during the entire larval period. Suppression of expression by specific RNA interference (RNAi) significantly (<0.05) reduced haemocyte nodule formation in response to immune challenge and impaired both larval and pupal development. was expressed in all developmental stages. Suppression of expression by RNAi reduced cellular immune response and interfered with adult metamorphosis. These results suggest that can alter host gene expression by interfering with chromatin modification and remodelling factors in addition to its direct epigenetic control activity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000560
2016-10-13
2020-03-31
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/10/2780.html?itemId=/content/journal/jgv/10.1099/jgv.0.000560&mimeType=html&fmt=ahah

References

  1. Aasland R., Stewart A. F., Gibson T.. 1996; The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends Biochem Sci21:87–88 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z.. 1997; Gapped blast and PSI-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  3. Armstrong J. A., Papoulas O., Daubresse G., Sperling A. S., John T. L., Matthew P. S., John W. T.. 2002; The Drosophila BRM complex facilitates global transcription by RNA polymerase II. EMBO J21:5245–5254 [CrossRef][PubMed]
    [Google Scholar]
  4. Bae S., Kim Y.. 2004; Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth, Plutella xylostella. Comp Biochem Physiol A138:39–44 [CrossRef]
    [Google Scholar]
  5. Bae S., Kim Y.. 2009; IkB genes encoded in Cotesia plutellae bracovirus suppress an antiviral response and enhance baculovirus pathogenicity against the diamondback moth, Plutella xylostella. J Invertebr Pathol102:79–87 [CrossRef][PubMed]
    [Google Scholar]
  6. Bahk Y. Y., Kim S. A., Kim J., Euh H., Bai G., Cho S., Kim Y. S.. 2004; Antigens secreted from Mycobacterium tuberculosis: identification by proteomics approach and test for diagnostic marker. Proteomics4:3299–3307 [CrossRef][PubMed]
    [Google Scholar]
  7. Black J. C., Allen A., Van R. C., Forbes E., Longworth M., Tschöp K., Rinehart C., Quiton J., Walsh R. et al. 2010; Conserved Antagonism between JMJD2A/KDM4A and HP1γ during Cell Cycle Progression. Mol Cell40:736–748 [CrossRef][PubMed]
    [Google Scholar]
  8. Bézier A., Herbinière J., Lanzrein B., Drezen J. M.. 2009; Polydnavirus hidden face: The genes producing virus particles of parasitic wasps. J Invertebr Pathol101:194–203 [CrossRef][PubMed]
    [Google Scholar]
  9. Bézier A., Louis F., Jancek S., Periquet G., Thézé J., Gyapay G., Musset K., Lesobre J., Lenoble P. et al. 2013; Functional endogenous viral elements in the genome of the parasitoid wasp Cotesia congregata: insights into the evolutionary dynamics of bracoviruses. Philos Trans R Soc Lond B Biol Sci368:20130047 [CrossRef][PubMed]
    [Google Scholar]
  10. Burke G. R., Strand M. R.. 2014; Systematic analysis of a wasp parasitism arsenal. Mol Ecol23:890–901 [CrossRef][PubMed]
    [Google Scholar]
  11. Cairns B. R.. 2007; Chromatin remodeling: insights and intrigue from single-molecule studies. Nat Struct Mol Biol14:989–996 [CrossRef][PubMed]
    [Google Scholar]
  12. Chen Y. F., Gao F., Ye X. Q., Wei S. J., Shi M., Zheng H. J., Chen X. X.. 2011; Deep sequencing of Cotesia vestalis bracovirus reveals the complexity of a polydnavirus genome. Virology414:42–50 [CrossRef][PubMed]
    [Google Scholar]
  13. Clark K. D., Kim Y., Strand M. R.. 2005; Plasmatocyte sensitivity to plasmatocyte spreading peptide (PSP) fluctuates with the larval molting cycle. J Insect Physiol51:587–596 [CrossRef][PubMed]
    [Google Scholar]
  14. Cogill P., Finn R. D., Bateman A.. 2008; Identifying protein domains with Pfam database. Curr Protoc Bioinformatics235:17
    [Google Scholar]
  15. Conesa A., Götz S., García-Gómez J. M., Terol J., Talón M., Robles M.. 2005; Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics21:3674–3676 [CrossRef][PubMed]
    [Google Scholar]
  16. Eddy S. R.. 1998; Profile hidden Markov models. Bioinformatics14:755–763 [CrossRef][PubMed]
    [Google Scholar]
  17. Espagne E., Dupuy C., Huguet E., Cattolico L., Provost B., Martins N., Poirié M., Periquet G., Drezen J. M.. 2004; Genome sequence of a polydnavirus: insights into symbiotic virus evolution. Science306:286–289 [CrossRef][PubMed]
    [Google Scholar]
  18. Fleming J. G., Summers M. D.. 1991; Polydnavirus DNA is integrated in the DNA of its parasitoid wasp host. Proc Natl Acad Sci U S A88:9770–9774 [CrossRef][PubMed]
    [Google Scholar]
  19. Gad W., Kim Y.. 2008; A viral histone H4 encoded by Cotesia plutellae bracovirus inhibits haemocyte-spreading behaviour of the diamondback moth, Plutella xylostella. J Gen Virol89:931–938 [CrossRef][PubMed]
    [Google Scholar]
  20. Gad W., Kim Y.. 2009; N-terminal tail of a viral histone H4 encoded in Cotesia plutellae bracovirus is essential to suppress gene expression of host histone H4. Insect Mol Biol18:111–118 [CrossRef][PubMed]
    [Google Scholar]
  21. Götz S., García-Gómez J. M., Terol J., Williams T. D., Nagaraj S. H., Nueda M. J., Robles M., Talón M., Dopazo J., Conesa A.. 2008; High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res36:3420–3435 [CrossRef][PubMed]
    [Google Scholar]
  22. Grüne T., Brzeski J., Eberharter A., Clapier C. R., Corona D. F., Becker P. B., Müller C. W.. 2003; Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol Cell12:449–460 [CrossRef][PubMed]
    [Google Scholar]
  23. Haidl G., Becker A., Henkel R.. 1991; Poor development of outer dense fibers as a major cause of tail abnormalities in the spermatozoa of asthenoteratozoospermic men. Hum Reprod6:1431–1438
    [Google Scholar]
  24. Hepat R., Kim Y.. 2011; Transient expression of a viral histone H4 inhibits expression of cellular and humoral immune-associated genes in Tribolium castaneum. Biochem Biophys Res Commun415:279–283 [CrossRef][PubMed]
    [Google Scholar]
  25. Hepat R., Kim Y.. 2012; In vivo transient expression for the functional analysis of polydnaviral genes. J Invertebr Pathol111:152–159 [CrossRef][PubMed]
    [Google Scholar]
  26. Hepat R., Song J. J., Lee D., Kim Y.. 2013; A viral histone h4 joins to eukaryotic nucleosomes and alters host gene expression. J Virol87:11223–11230 [CrossRef][PubMed]
    [Google Scholar]
  27. Ibrahim A. M., Kim Y.. 2006; Parasitism by Cotesia plutellae alters the hemocyte population and immunological function of the diamondback moth, Plutella xylostella. J Insect Physiol52:943–950 [CrossRef][PubMed]
    [Google Scholar]
  28. Karouzakis E., Gay R. E., Gay S., Neidhart M.. 2012; Increased recycling of polyamines is associated with global DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum64:1809–1817 [CrossRef][PubMed]
    [Google Scholar]
  29. Klose R. J., Yamane K., Bae Y., Zhang D., Erdjument-Bromage H., Tempst P., Wong J., Zhang Y.. 2006; The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature442:312–316 [CrossRef][PubMed]
    [Google Scholar]
  30. Lessard J., Wu J. I., Ranish J. A., Wan M., Winslow M. M., Staahl B. T., Wu H., Aebersold R., Graef I. A., Crabtree G. R.. 2007; An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron55:201–215 [CrossRef][PubMed]
    [Google Scholar]
  31. Livak K. J., Schmittgen T. D.. 2001; Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCT method. Methods25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  32. Loh Y. H., Zhang W., Chen X., George J., Ng H.-H.. 2007; Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev21:2545–2557 [CrossRef][PubMed]
    [Google Scholar]
  33. Margueron R., Trojer P., Reinberg D.. 2005; The key to development: interpreting the histone code?. Curr Opin Genet Dev15:163–176 [CrossRef][PubMed]
    [Google Scholar]
  34. Martin C., Zhang Y.. 2005; The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol6:838–849 [CrossRef][PubMed]
    [Google Scholar]
  35. Masliah-Planchon J., Bièche I., Guinebretière J. M., Bourdeaut F., Delattre O.. 2015; SWI/SNF chromatin remodeling and human malignancies. Annu Rev Pathol10:145–171 [CrossRef][PubMed]
    [Google Scholar]
  36. Mine E., Sakurai H., Izumi S., Tomino S.. 1995; The fat body cell-free system for tissue-specific transcription of plasma protein gene of Bombyx mori. Nucleic Acids Res23:2648–2653 [CrossRef][PubMed]
    [Google Scholar]
  37. Murray K.. 1964; The occurrence of epsilon-N-methyl lysine in histones. Biochem3:10–15 [CrossRef][PubMed]
    [Google Scholar]
  38. Nalini M., Kim Y.. 2007; A putative protein translation inhibitory factor encoded by Cotesia plutellae bracovirus suppresses host hemocyte-spreading behavior. J Insect Physiol53:1283–1292 [CrossRef][PubMed]
    [Google Scholar]
  39. Neigeborn L., Carlson M.. 1984; Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics108:845–858
    [Google Scholar]
  40. Nottke A., Colaiacovo M. P., Shi Y.. 2009; Developmental roles of the histone lysine demethylases. Development136:879–889 [CrossRef][PubMed]
    [Google Scholar]
  41. Paik W. K., Kim S.. 1971; Protein methylation. Science174:114–119 [CrossRef][PubMed]
    [Google Scholar]
  42. Park B., Kim Y.. 2010; Transient transcription of a putative RNase containing BEN domain encoded in Cotesia plutellae bracovirus induces an immunosuppression of the diamondback moth, Plutella xylostella. J Invertebr Pathol105:156–163 [CrossRef][PubMed]
    [Google Scholar]
  43. Phelan M. L., Sif S., Narlikar G. J., Kingston R. E.. 1999; Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol Cell3:247–253 [CrossRef][PubMed]
    [Google Scholar]
  44. Popov N., Gil J.. 2010; Epigenetic regulation of the INK4b-ARF-INK4a locus: in sickness and in health. Epigenetics5:685–690 [CrossRef][PubMed]
    [Google Scholar]
  45. Qi Y., Teng Z., Gao L., Wu S., Huang J., Ye G., Fang Q.. 2015; Transcriptome analysis of an endoparasitoid wasp Cotesia chilonis (Hymenoptera: Braconidae) reveals genes involved in successful parasitism. Arch Insect Biochem Physiol88:203–221 [CrossRef][PubMed]
    [Google Scholar]
  46. Rea S., Eisenhaber F., O'Carroll D., Strahl B. D., Sun Z. W., Schmid M., Opravil S., Mechtler K., Ponting C. P. et al. 2000; Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature406:593–599 [CrossRef][PubMed]
    [Google Scholar]
  47. SAS Institute Inc. 1989; SAS/STAT User’s Guide, Release 6.03 edn. Cary, NC: SAS Institute;
    [Google Scholar]
  48. Shi Y., Lan F., Matson C., Mulligan P., Whetstine J. R., Cole P. A., Casero R. A., Shi Y.. 2004; Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell119:941–953 [CrossRef][PubMed]
    [Google Scholar]
  49. Simon J. A., Tamkun J. W.. 2002; Programming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes. Curr Opin Genet Dev12:210–218 [CrossRef][PubMed]
    [Google Scholar]
  50. Stern M., Jensen R., Herskowitz I.. 1984; Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol178:853–868 [CrossRef][PubMed]
    [Google Scholar]
  51. Strand M. R., Burke G. R.. 2013; Polydnavirus-wasp associations: evolution, genome organization, and function. Curr Opin Virol3:587–594 [CrossRef][PubMed]
    [Google Scholar]
  52. Strobl-Mazzulla P. H., Sauka-Spengler T., Bronner-Fraser M.. 2010; Histone demethylase JmjD2A regulates neural crest specification. Dev Cell19:460–468 [CrossRef][PubMed]
    [Google Scholar]
  53. Takeuchi T., Watanabe Y., Takano-Shimizu T., Kondo S.. 2006; Roles of jumonji and jumonji family genes in chromatin regulation and development. Dev Dyn235:2449–2459 [CrossRef][PubMed]
    [Google Scholar]
  54. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  55. Tong J. K., Hassig C. A., Schnitzler G. R., Kingston R. E., Schreiber S. L.. 1998; Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature395:917–921[CrossRef]
    [Google Scholar]
  56. Tsukada Y., Fang J., Erdjument-Bromage H., Warren M. E., Borchers C. H., Tempst P., Zhang Y.. 2006; Histone demethylation by a family of JmjC domain-containing proteins. Nature439:811–816[CrossRef]
    [Google Scholar]
  57. Tsurumi A., Dutta P., Dutta P., Yan S. J., Sheng R., Li W. X.. 2013; Drosophila Kdm4 demethylases in histone H3 lysine 9 demethylation and ecdysteroid signaling. Sci Rep3:2894 [CrossRef][PubMed]
    [Google Scholar]
  58. Volkoff A. N., Jouan V., Urbach S., Samain S., Bergoin M., Wincker P., Demettre E., Cousserans F., Provost B. et al. 2010; Analysis of virion structural components reveals vestiges of the ancestral ichnovirus genome. PLoS Pathog6:e1000923 [CrossRef][PubMed]
    [Google Scholar]
  59. Webb B. A., Beckage N. E., Hayakawa Y., Krell P. J., Lanzrein B., Stoltz D. B., Strand M. R., Summers M. D.. 2000; Polydnaviridae. In Virus Taxonomy , pp.253–260 Edited by van Regenmortel M. H. V., Maniloff J., Mayo M. A., McGeoch D. J., Preingle C. R., Wickner R. B.. New York: Academic Press;
    [Google Scholar]
  60. Webb B. A., Strand M. R., Dickey S. E., Beck M. H., Hilgarth R. S., Barney W. E., Kadash K., Kroemer J. A., Lindstrom K. G. et al. 2006; Polydnavirus genomes reflect their dual roles as mutualists and pathogens. Virology347:160–174 [CrossRef][PubMed]
    [Google Scholar]
  61. Whetstine J. R., Nottke A., Lan F., Huarte M., Smolikov S., Chen Z., Spooner E., Li E., Zhang G. et al. 2006; Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell125:467–481 [CrossRef][PubMed]
    [Google Scholar]
  62. Wu J. I., Lessard J., Crabtree G. R.. 2009; Understanding the words of chromatin regulation. Cell136:200–206 [CrossRef][PubMed]
    [Google Scholar]
  63. Ye L., Fan Z., Yu B., Chang J., Al Hezaimi K., Zhou X., Park N.-H., Wang C.-Y.. 2012; Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell11:50–61 [CrossRef][PubMed]
    [Google Scholar]
  64. You M., Yue Z., He W., Yang X., Yang G., Xie M., Zhan D., Baxter S. W., Vasseur L. et al. 2013; A heterozygous moth genome provides insights into herbivory and detoxification. Nat Genet45:220–225 [CrossRef]
    [Google Scholar]
  65. Zhang Y., Reinberg D.. 2001; Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev15:2343–2360 [CrossRef][PubMed]
    [Google Scholar]
  66. Zhou B., Riddiford L. M.. 2001; Hormonal regulation and patterning of the broad-complex in the epidermis and wing discs of the tobacco hornworm, Manduca sexta. Dev Biol231:125–137 [CrossRef][PubMed]
    [Google Scholar]
  67. Zhao K., Wang W., Rando O. J., Xue Y., Swiderek K., Kuo A., Crabtree G. R.. 1998; Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell95:625–636 [CrossRef][PubMed]
    [Google Scholar]
  68. Zraly C. B., Marenda D. R., Nanchal R., Cavalli G., Muchardt C., Dingwall A. K.. 2003; SNR1 is an essential subunit in a subset of Drosophila brm complexes, targeting specific functions during development. Dev Biol253:291–308 [CrossRef][PubMed]
    [Google Scholar]
  69. Zraly C. B., Middleton F. A., Dingwall A. K.. 2006; Hormone-response genes are direct in vivo regulatory targets of Brahma (SWI/SNF) complex function. J Biol Chem281:35305–35315 [CrossRef][PubMed]
    [Google Scholar]
  70. Zuo X., Echan L., Hembach P., Tang H. Y., Speicher K. D., Santoli D., Speicher D. W.. 2001; Towards global analysis of mammalian proteomes using sample prefractionation prior to narrow pH range two-dimensional gels and using one-dimensional gels for insoluble and large proteins. Electrophoresis22:1603–1615 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000560
Loading
/content/journal/jgv/10.1099/jgv.0.000560
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error