1887

Abstract

Histone H4, a nucleosome subunit in eukaryotes, plays crucial roles in DNA package and regulation of gene expression through covalent modification. A viral histone H4 encoded in Cotesia plutellae bracovirus (CpBV), a polydnavirus, is called CpBV-H4. It is highly homologous to other histone H4 proteins excepting 38 extra amino acid residues in the N terminus. CpBV-H4 can form octamer with other histone subunits and alter host gene expression. In this study, CpBV-H4 was transiently expressed in a natural host (Plutella xylostella) and its suppressive activity on host gene expression was evaluated by the suppressive subtractive hybridization (SSH) technique. The SSH targets down-regulated by CpBV-H4 were read with the 454 pyrosequencing platform and annotated using the genome of P. xylostella. The down-regulated genes (610 contigs) were annotated in most functional categories based on gene ontology. Among these SSH targets, 115 genes were functionally distinct, including two chromatin remodelling factors: a lysine-specific demethylase (Px-KDM) and a chromatin remodelling complex [Px-SWI/SNF (SWItch/Sucrose Non-Fermentable)]. Px-KDM was highly expressed in all tested tissues during the entire larval period. Suppression of Px-KDM expression by specific RNA interference (RNAi) significantly (P<0.05) reduced haemocyte nodule formation in response to immune challenge and impaired both larval and pupal development. Px-SWI/SNF was expressed in all developmental stages. Suppression of Px-SWI/SNF expression by RNAi reduced cellular immune response and interfered with adult metamorphosis. These results suggest that CpBV-H4 can alter host gene expression by interfering with chromatin modification and remodelling factors in addition to its direct epigenetic control activity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000560
2016-10-13
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/10/2780.html?itemId=/content/journal/jgv/10.1099/jgv.0.000560&mimeType=html&fmt=ahah

References

  1. Aasland R., Stewart A. F., Gibson T..( 1996;). The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. . Trends Biochem Sci 21: 87–88. [CrossRef] [PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z..( 1997;). Gapped blast and PSI-blast: a new generation of protein database search programs. . Nucleic Acids Res 25: 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  3. Armstrong J. A., Papoulas O., Daubresse G., Sperling A. S., John T. L., Matthew P. S., John W. T..( 2002;). The Drosophila BRM complex facilitates global transcription by RNA polymerase II. . EMBO J 21: 5245–5254. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bae S., Kim Y..( 2004;). Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth, Plutella xylostella. . Comp Biochem Physiol A 138: 39–44. [CrossRef]
    [Google Scholar]
  5. Bae S., Kim Y..( 2009;). IkB genes encoded in Cotesia plutellae bracovirus suppress an antiviral response and enhance baculovirus pathogenicity against the diamondback moth, Plutella xylostella. . J Invertebr Pathol 102: 79–87. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bahk Y. Y., Kim S. A., Kim J., Euh H., Bai G., Cho S., Kim Y. S..( 2004;). Antigens secreted from Mycobacterium tuberculosis: identification by proteomics approach and test for diagnostic marker. . Proteomics 4: 3299–3307. [CrossRef] [PubMed]
    [Google Scholar]
  7. Black J. C., Allen A., Van R. C., Forbes E., Longworth M., Tschöp K., Rinehart C., Quiton J., Walsh R. et al.( 2010;). Conserved Antagonism between JMJD2A/KDM4A and HP1γ during Cell Cycle Progression. . Mol Cell 40: 736–748. [CrossRef] [PubMed]
    [Google Scholar]
  8. Bézier A., Herbinière J., Lanzrein B., Drezen J. M..( 2009;). Polydnavirus hidden face: The genes producing virus particles of parasitic wasps. . J Invertebr Pathol 101: 194–203. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bézier A., Louis F., Jancek S., Periquet G., Thézé J., Gyapay G., Musset K., Lesobre J., Lenoble P. et al.( 2013;). Functional endogenous viral elements in the genome of the parasitoid wasp Cotesia congregata: insights into the evolutionary dynamics of bracoviruses. . Philos Trans R Soc Lond B Biol Sci 368: 20130047. [CrossRef] [PubMed]
    [Google Scholar]
  10. Burke G. R., Strand M. R..( 2014;). Systematic analysis of a wasp parasitism arsenal. . Mol Ecol 23: 890–901. [CrossRef] [PubMed]
    [Google Scholar]
  11. Cairns B. R..( 2007;). Chromatin remodeling: insights and intrigue from single-molecule studies. . Nat Struct Mol Biol 14: 989–996. [CrossRef] [PubMed]
    [Google Scholar]
  12. Chen Y. F., Gao F., Ye X. Q., Wei S. J., Shi M., Zheng H. J., Chen X. X..( 2011;). Deep sequencing of Cotesia vestalis bracovirus reveals the complexity of a polydnavirus genome. . Virology 414: 42–50. [CrossRef] [PubMed]
    [Google Scholar]
  13. Clark K. D., Kim Y., Strand M. R..( 2005;). Plasmatocyte sensitivity to plasmatocyte spreading peptide (PSP) fluctuates with the larval molting cycle. . J Insect Physiol 51: 587–596. [CrossRef] [PubMed]
    [Google Scholar]
  14. Cogill P., Finn R. D., Bateman A..( 2008;). Identifying protein domains with Pfam database. . Curr Protoc Bioinformatics 235: 17.
    [Google Scholar]
  15. Conesa A., Götz S., García-Gómez J. M., Terol J., Talón M., Robles M..( 2005;). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. . Bioinformatics 21: 3674–3676. [CrossRef] [PubMed]
    [Google Scholar]
  16. Eddy S. R..( 1998;). Profile hidden Markov models. . Bioinformatics 14: 755–763. [CrossRef] [PubMed]
    [Google Scholar]
  17. Espagne E., Dupuy C., Huguet E., Cattolico L., Provost B., Martins N., Poirié M., Periquet G., Drezen J. M..( 2004;). Genome sequence of a polydnavirus: insights into symbiotic virus evolution. . Science 306: 286–289. [CrossRef] [PubMed]
    [Google Scholar]
  18. Fleming J. G., Summers M. D..( 1991;). Polydnavirus DNA is integrated in the DNA of its parasitoid wasp host. . Proc Natl Acad Sci U S A 88: 9770–9774. [CrossRef] [PubMed]
    [Google Scholar]
  19. Gad W., Kim Y..( 2008;). A viral histone H4 encoded by Cotesia plutellae bracovirus inhibits haemocyte-spreading behaviour of the diamondback moth, Plutella xylostella. . J Gen Virol 89: 931–938. [CrossRef] [PubMed]
    [Google Scholar]
  20. Gad W., Kim Y..( 2009;). N-terminal tail of a viral histone H4 encoded in Cotesia plutellae bracovirus is essential to suppress gene expression of host histone H4. . Insect Mol Biol 18: 111–118. [CrossRef] [PubMed]
    [Google Scholar]
  21. Götz S., García-Gómez J. M., Terol J., Williams T. D., Nagaraj S. H., Nueda M. J., Robles M., Talón M., Dopazo J., Conesa A..( 2008;). High-throughput functional annotation and data mining with the Blast2GO suite. . Nucleic Acids Res 36: 3420–3435. [CrossRef] [PubMed]
    [Google Scholar]
  22. Grüne T., Brzeski J., Eberharter A., Clapier C. R., Corona D. F., Becker P. B., Müller C. W..( 2003;). Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. . Mol Cell 12: 449–460. [CrossRef] [PubMed]
    [Google Scholar]
  23. Haidl G., Becker A., Henkel R..( 1991;). Poor development of outer dense fibers as a major cause of tail abnormalities in the spermatozoa of asthenoteratozoospermic men. . Hum Reprod 6: 1431–1438.
    [Google Scholar]
  24. Hepat R., Kim Y..( 2011;). Transient expression of a viral histone H4 inhibits expression of cellular and humoral immune-associated genes in Tribolium castaneum. . Biochem Biophys Res Commun 415: 279–283. [CrossRef] [PubMed]
    [Google Scholar]
  25. Hepat R., Kim Y..( 2012;). In vivo transient expression for the functional analysis of polydnaviral genes. . J Invertebr Pathol 111: 152–159. [CrossRef] [PubMed]
    [Google Scholar]
  26. Hepat R., Song J. J., Lee D., Kim Y..( 2013;). A viral histone h4 joins to eukaryotic nucleosomes and alters host gene expression. . J Virol 87: 11223–11230. [CrossRef] [PubMed]
    [Google Scholar]
  27. Ibrahim A. M., Kim Y..( 2006;). Parasitism by Cotesia plutellae alters the hemocyte population and immunological function of the diamondback moth, Plutella xylostella. . J Insect Physiol 52: 943–950. [CrossRef] [PubMed]
    [Google Scholar]
  28. Karouzakis E., Gay R. E., Gay S., Neidhart M..( 2012;). Increased recycling of polyamines is associated with global DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. . Arthritis Rheum 64: 1809–1817. [CrossRef] [PubMed]
    [Google Scholar]
  29. Klose R. J., Yamane K., Bae Y., Zhang D., Erdjument-Bromage H., Tempst P., Wong J., Zhang Y..( 2006;). The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. . Nature 442: 312–316. [CrossRef] [PubMed]
    [Google Scholar]
  30. Lessard J., Wu J. I., Ranish J. A., Wan M., Winslow M. M., Staahl B. T., Wu H., Aebersold R., Graef I. A., Crabtree G. R..( 2007;). An essential switch in subunit composition of a chromatin remodeling complex during neural development. . Neuron 55: 201–215. [CrossRef] [PubMed]
    [Google Scholar]
  31. Livak K. J., Schmittgen T. D..( 2001;). Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCT method. . Methods 25: 402–408. [CrossRef] [PubMed]
    [Google Scholar]
  32. Loh Y. H., Zhang W., Chen X., George J., Ng H.-H..( 2007;). Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. . Genes Dev 21: 2545–2557. [CrossRef] [PubMed]
    [Google Scholar]
  33. Margueron R., Trojer P., Reinberg D..( 2005;). The key to development: interpreting the histone code?. Curr Opin Genet Dev 15: 163–176. [CrossRef] [PubMed]
    [Google Scholar]
  34. Martin C., Zhang Y..( 2005;). The diverse functions of histone lysine methylation. . Nat Rev Mol Cell Biol 6: 838–849. [CrossRef] [PubMed]
    [Google Scholar]
  35. Masliah-Planchon J., Bièche I., Guinebretière J. M., Bourdeaut F., Delattre O..( 2015;). SWI/SNF chromatin remodeling and human malignancies. . Annu Rev Pathol 10: 145–171. [CrossRef] [PubMed]
    [Google Scholar]
  36. Mine E., Sakurai H., Izumi S., Tomino S..( 1995;). The fat body cell-free system for tissue-specific transcription of plasma protein gene of Bombyx mori. . Nucleic Acids Res 23: 2648–2653. [CrossRef] [PubMed]
    [Google Scholar]
  37. Murray K..( 1964;). The occurrence of epsilon-N-methyl lysine in histones. . Biochem 3: 10–15. [CrossRef] [PubMed]
    [Google Scholar]
  38. Nalini M., Kim Y..( 2007;). A putative protein translation inhibitory factor encoded by Cotesia plutellae bracovirus suppresses host hemocyte-spreading behavior. . J Insect Physiol 53: 1283–1292. [CrossRef] [PubMed]
    [Google Scholar]
  39. Neigeborn L., Carlson M..( 1984;). Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. . Genetics 108: 845–858.
    [Google Scholar]
  40. Nottke A., Colaiacovo M. P., Shi Y..( 2009;). Developmental roles of the histone lysine demethylases. . Development 136: 879–889. [CrossRef] [PubMed]
    [Google Scholar]
  41. Paik W. K., Kim S..( 1971;). Protein methylation. . Science 174: 114–119. [CrossRef] [PubMed]
    [Google Scholar]
  42. Park B., Kim Y..( 2010;). Transient transcription of a putative RNase containing BEN domain encoded in Cotesia plutellae bracovirus induces an immunosuppression of the diamondback moth, Plutella xylostella. . J Invertebr Pathol 105: 156–163. [CrossRef] [PubMed]
    [Google Scholar]
  43. Phelan M. L., Sif S., Narlikar G. J., Kingston R. E..( 1999;). Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. . Mol Cell 3: 247–253. [CrossRef] [PubMed]
    [Google Scholar]
  44. Popov N., Gil J..( 2010;). Epigenetic regulation of the INK4b-ARF-INK4a locus: in sickness and in health. . Epigenetics 5: 685–690. [CrossRef] [PubMed]
    [Google Scholar]
  45. Qi Y., Teng Z., Gao L., Wu S., Huang J., Ye G., Fang Q..( 2015;). Transcriptome analysis of an endoparasitoid wasp Cotesia chilonis (Hymenoptera: Braconidae) reveals genes involved in successful parasitism. . Arch Insect Biochem Physiol 88: 203–221. [CrossRef] [PubMed]
    [Google Scholar]
  46. Rea S., Eisenhaber F., O'Carroll D., Strahl B. D., Sun Z. W., Schmid M., Opravil S., Mechtler K., Ponting C. P. et al.( 2000;). Regulation of chromatin structure by site-specific histone H3 methyltransferases. . Nature 406: 593–599. [CrossRef] [PubMed]
    [Google Scholar]
  47. SAS Institute Inc.( 1989;). SAS/STAT User’s Guide, , Release 6.03 edn.. Cary, NC:: SAS Institute;.
    [Google Scholar]
  48. Shi Y., Lan F., Matson C., Mulligan P., Whetstine J. R., Cole P. A., Casero R. A., Shi Y..( 2004;). Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. . Cell 119: 941–953. [CrossRef] [PubMed]
    [Google Scholar]
  49. Simon J. A., Tamkun J. W..( 2002;). Programming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes. . Curr Opin Genet Dev 12: 210–218. [CrossRef] [PubMed]
    [Google Scholar]
  50. Stern M., Jensen R., Herskowitz I..( 1984;). Five SWI genes are required for expression of the HO gene in yeast. . J Mol Biol 178: 853–868. [CrossRef] [PubMed]
    [Google Scholar]
  51. Strand M. R., Burke G. R..( 2013;). Polydnavirus-wasp associations: evolution, genome organization, and function. . Curr Opin Virol 3: 587–594. [CrossRef] [PubMed]
    [Google Scholar]
  52. Strobl-Mazzulla P. H., Sauka-Spengler T., Bronner-Fraser M..( 2010;). Histone demethylase JmjD2A regulates neural crest specification. . Dev Cell 19: 460–468. [CrossRef] [PubMed]
    [Google Scholar]
  53. Takeuchi T., Watanabe Y., Takano-Shimizu T., Kondo S..( 2006;). Roles of jumonji and jumonji family genes in chromatin regulation and development. . Dev Dyn 235: 2449–2459. [CrossRef] [PubMed]
    [Google Scholar]
  54. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  55. Tong J. K., Hassig C. A., Schnitzler G. R., Kingston R. E., Schreiber S. L..( 1998;). Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. . Nature 395: 917–921.[CrossRef]
    [Google Scholar]
  56. Tsukada Y., Fang J., Erdjument-Bromage H., Warren M. E., Borchers C. H., Tempst P., Zhang Y..( 2006;). Histone demethylation by a family of JmjC domain-containing proteins. . Nature 439: 811–816.[CrossRef]
    [Google Scholar]
  57. Tsurumi A., Dutta P., Dutta P., Yan S. J., Sheng R., Li W. X..( 2013;). Drosophila Kdm4 demethylases in histone H3 lysine 9 demethylation and ecdysteroid signaling. . Sci Rep 3: 2894. [CrossRef] [PubMed]
    [Google Scholar]
  58. Volkoff A. N., Jouan V., Urbach S., Samain S., Bergoin M., Wincker P., Demettre E., Cousserans F., Provost B. et al.( 2010;). Analysis of virion structural components reveals vestiges of the ancestral ichnovirus genome. . PLoS Pathog 6:,e1000923. [CrossRef] [PubMed]
    [Google Scholar]
  59. Webb B. A., Beckage N. E., Hayakawa Y., Krell P. J., Lanzrein B., Stoltz D. B., Strand M. R., Summers M. D..( 2000;). Polydnaviridae. . In Virus Taxonomy , pp. 253–260. Edited by van Regenmortel M. H. V., Maniloff J., Mayo M. A., McGeoch D. J., Preingle C. R., Wickner R. B.. New York:: Academic Press;.
    [Google Scholar]
  60. Webb B. A., Strand M. R., Dickey S. E., Beck M. H., Hilgarth R. S., Barney W. E., Kadash K., Kroemer J. A., Lindstrom K. G. et al.( 2006;). Polydnavirus genomes reflect their dual roles as mutualists and pathogens. . Virology 347: 160–174. [CrossRef] [PubMed]
    [Google Scholar]
  61. Whetstine J. R., Nottke A., Lan F., Huarte M., Smolikov S., Chen Z., Spooner E., Li E., Zhang G. et al.( 2006;). Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. . Cell 125: 467–481. [CrossRef] [PubMed]
    [Google Scholar]
  62. Wu J. I., Lessard J., Crabtree G. R..( 2009;). Understanding the words of chromatin regulation. . Cell 136: 200–206. [CrossRef] [PubMed]
    [Google Scholar]
  63. Ye L., Fan Z., Yu B., Chang J., Al Hezaimi K., Zhou X., Park N.-H., Wang C.-Y..( 2012;). Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. . Cell Stem Cell 11: 50–61. [CrossRef] [PubMed]
    [Google Scholar]
  64. You M., Yue Z., He W., Yang X., Yang G., Xie M., Zhan D., Baxter S. W., Vasseur L. et al.( 2013;). A heterozygous moth genome provides insights into herbivory and detoxification. . Nat Genet 45: 220–225. [CrossRef]
    [Google Scholar]
  65. Zhang Y., Reinberg D..( 2001;). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. . Genes Dev 15: 2343–2360. [CrossRef] [PubMed]
    [Google Scholar]
  66. Zhou B., Riddiford L. M..( 2001;). Hormonal regulation and patterning of the broad-complex in the epidermis and wing discs of the tobacco hornworm, Manduca sexta. . Dev Biol 231: 125–137. [CrossRef] [PubMed]
    [Google Scholar]
  67. Zhao K., Wang W., Rando O. J., Xue Y., Swiderek K., Kuo A., Crabtree G. R..( 1998;). Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. . Cell 95: 625–636. [CrossRef] [PubMed]
    [Google Scholar]
  68. Zraly C. B., Marenda D. R., Nanchal R., Cavalli G., Muchardt C., Dingwall A. K..( 2003;). SNR1 is an essential subunit in a subset of Drosophila brm complexes, targeting specific functions during development. . Dev Biol 253: 291–308. [CrossRef] [PubMed]
    [Google Scholar]
  69. Zraly C. B., Middleton F. A., Dingwall A. K..( 2006;). Hormone-response genes are direct in vivo regulatory targets of Brahma (SWI/SNF) complex function. . J Biol Chem 281: 35305–35315. [CrossRef] [PubMed]
    [Google Scholar]
  70. Zuo X., Echan L., Hembach P., Tang H. Y., Speicher K. D., Santoli D., Speicher D. W..( 2001;). Towards global analysis of mammalian proteomes using sample prefractionation prior to narrow pH range two-dimensional gels and using one-dimensional gels for insoluble and large proteins. . Electrophoresis 22: 1603–1615. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000560
Loading
/content/journal/jgv/10.1099/jgv.0.000560
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error