1887

Abstract

Most human T-lymphotropic virus type 1 (HTLV-1)-infected patients remain asymptomatic throughout life. The factors associated with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) development have not been fully elucidated; immunological and genetic factors may be involved. The association of 14 bp INS/DEL polymorphism with HTLV-1 infection susceptibility has been reported previously. Here, other polymorphic sites at the 3′-UTR (14-bp D/I, +3003C/T, +3010C/G, +3027A/C, +3035C/T, +3142C/G, +3187A/G and +3196C/G) were evaluated in 37 HTLV-1-infected individuals exhibiting HAM/TSP, 45 HTLV-1 asymptomatic carriers (HAC) and 153 uninfected individuals, followed up at University Hospital of the Faculty of Medicine of Ribeirão Preto, University of São Paulo, Brazil. It was observed that: (i) 14bpDI genotype is a risk factor for HTLV-1 infection, while the 14bpDD and +3142CC genotypes were associated with protection against infection; (ii) the +3142C allele and the +3003CT and +3142CC genotypes were associated with susceptibility, while 14bpII and +3003TT genotypes were associated with protection against HAM/TSP development; and (iii) the 14bpII, +3010CC, +3142GG and +3187AA genotypes were associated with lower HTLV-1 proviral load compared to respective counterpart genotypes. Findings that has a well-recognized immunomodulatory role and that the genetic variability at 3′-UTR may post-transcriptionally modify production indicate a differential genetic susceptibility to: (i) the development of HTLV-1 infection, (ii) the magnitude of HTLV-1 proviral load and (iii) HAM/TSP development.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000559
2016-10-13
2020-08-10
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/10/2742.html?itemId=/content/journal/jgv/10.1099/jgv.0.000559&mimeType=html&fmt=ahah

References

  1. Aceti A., Gianserra L., Lambiase L., Pennica A., Teti E.. 2015; Pharmacogenetics as a tool to tailor antiretroviral therapy: A review. World J Virol4:198–208 [CrossRef][PubMed]
    [Google Scholar]
  2. Asquith B., Mosley A. J., Barfield A., Marshall S. E., Heaps A., Goon P., Hanon E., Tanaka Y., Taylor G. P., Bangham C. R.. 2005; A functional CD8+ cell assay reveals individual variation in CD8+ cell antiviral efficacy and explains differences in human T-lymphotropic virus type 1 proviral load. J Gen Virol86:1515–1523 [CrossRef][PubMed]
    [Google Scholar]
  3. Asquith B., Bangham C. R.. 2007; Quantifying HTLV-I dynamics. Immunol Cell Biol85:280–286 [CrossRef][PubMed]
    [Google Scholar]
  4. Bangham C. R.. 2003; The immune control and cell-to-cell spread of human T-lymphotropic virus type 1. J Gen Virol84:3177–3189 [CrossRef][PubMed]
    [Google Scholar]
  5. Bermingham J., Jenkins D., McCarthy T., O'Brien M.. 2000; Genetic analysis of insulin-like growth factor II and HLA-G in pre-eclampsia. Biochem Soc Trans28:215–219 [CrossRef][PubMed]
    [Google Scholar]
  6. Bortolotti D., Gentili V., Rotola A., Cassai E., Rizzo R., Di Luca D.. 2014a; Impact of HLA-G analysis in prevention, diagnosis and treatment of pathological conditions. World J Methodol4:11–25 [CrossRef]
    [Google Scholar]
  7. Bortolotti D., Gentili V., Rotola A., Di Luca D., Rizzo R.. 2014b; Implication of HLA-G 3′ untranslated region polymorphisms in human papillomavirus infection. Tissue Antigens83:113–118 [CrossRef]
    [Google Scholar]
  8. Carosella E. D.. 2011; The tolerogenic molecule HLA-G. Immunol Lett138:22–24 [CrossRef][PubMed]
    [Google Scholar]
  9. Carosella E. D., Moreau P., Le Maoult J., Le Discorde M., Dausset J., Rouas-Freiss N.. 2003; HLA-G molecules: from maternal-fetal tolerance to tissue acceptance. Adv Immunol81:199–252[PubMed][CrossRef]
    [Google Scholar]
  10. Castelli E. C., Mendes-Junior C. T., Deghaide N. H., de Albuquerque R. S., Muniz Y. C., Simões R. T., Carosella E. D., Moreau P., Donadi E. A.. 2010; The genetic structure of 3′ untranslated region of the HLA-G gene: polymorphisms and haplotypes. Genes Immun11:134–141 [CrossRef][PubMed]
    [Google Scholar]
  11. Cordero E. A., Veit T. D., da Silva M. A., Jacques S. M., Silla L. M., Chies J. A.. 2009; HLA-G polymorphism influences the susceptibility to HCV infection in sickle cell disease patients. Tissue Antigens74:308–313 [CrossRef][PubMed]
    [Google Scholar]
  12. Costa G. C., Azevedo R., Gadelha S. R., Kashima S. H., Muricy G., Olavarria V. N., Covas D. T., Takayanagui O. M., Galvão-Castro B., Alcantara L. C.. 2009; Polymorphisms at GLUT1 gene are not associated with the development of TSP/HAM in Brazilian HTLV-1 infected individuals and the discovery of a new polymorphism at GLUT1 gene. J Med Virol81:552–557 [CrossRef][PubMed]
    [Google Scholar]
  13. Donadi E. A., Castelli E. C., Arnaiz-Villena A., Roger M., Rey D., Moreau P.. 2011; Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association. Cell Mol Life Sci68:369–395 [CrossRef][PubMed]
    [Google Scholar]
  14. Excoffier L., Slatkin M.. 1998; Incorporating genotypes of relatives into a test of linkage disequilibrium. Am J Hum Genet62:171–180 [CrossRef][PubMed]
    [Google Scholar]
  15. Excoffier L., Laval G., Schneider S.. 2005; arlequin (version 3.0), an integrated software package for population genetics data analysis. Evol Bioinform Online1:47–50
    [Google Scholar]
  16. Fabris A., Catamo E., Segat L., Morgutti M., Arraes L. C., de Lima-Filho J. L., Crovella S.. 2009; Association between HLA-G 3'UTR 14-bp polymorphism and HIV vertical transmission in Brazilian children. AIDS23:177–182 [CrossRef][PubMed]
    [Google Scholar]
  17. Gessain A., Cassar O.. 2012; Epidemiological aspects and world distribution of HTLV-1 infection. Front Microbiol3:388 [CrossRef][PubMed]
    [Google Scholar]
  18. Goncalves D. U., Proietti F. A., Barbosa-Stancioli E. F., Martins M. L., Ribas J. G., Martins-Filho O. A., Teixeira-Carvalho A., Peruhype-Magalhães V., Carneiro-Proietti A. B.. 2008; HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) inflammatory network. Inflamm Allergy Drug Targets7:98–107 [CrossRef][PubMed]
    [Google Scholar]
  19. Guo S. W., Thompson E. A.. 1992; Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics48:361–372 [CrossRef][PubMed]
    [Google Scholar]
  20. Haddad R., Cilião Alves D. C., Rocha-Junior M. C., Azevedo R., Pombo-de-Oliveira M. S., Takayanagui O. M., Donadi E. A., Covas D. T., Kashima S.. 2011; HLA-G 14-bp insertion/deletion polymorphism is a risk factor for HTLV-1 infection. AIDS Res Hum Retroviruses27:283–288 [CrossRef][PubMed]
    [Google Scholar]
  21. Hviid T. V., Hylenius S., Rørbye C., Nielsen L. G.. 2003; HLA-G allelic variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels. Immunogenetics55:63–79 [CrossRef][PubMed]
    [Google Scholar]
  22. Jiang Y., Chen S., Jia S., Zhu Z., Gao X., Dong D., Gao Y.. 2011; Association of HLA-G 3' UTR 14-bp insertion/deletion polymorphism with hepatocellular carcinoma susceptibility in a Chinese population. DNA Cell Biol30:1027–1032 [CrossRef][PubMed]
    [Google Scholar]
  23. Jin Z.-K., Xu C.-X., Tian P.-X., Xue W.-J., Ding X.-M., Zheng J., Ding C.-G., Ge G.-Q., Mao T.-C., Lin Y.. 2012; Impact of HLA-G 14-bp polymorphism on acute rejection and cytomegalovirus infection in kidney transplant recipients from northwestern China. Transpl Immunol27:69–74 [CrossRef][PubMed]
    [Google Scholar]
  24. Kashima S., Rodrigues E. S., Azevedo R., da Cruz Castelli E., Mendes-Junior C. T., Yoshioka F. K., da Silva I. T., Takayanagui O. M., Covas D. T.. 2009; DC-SIGN (CD209) gene promoter polymorphisms in a Brazilian population and their association with human T-cell lymphotropic virus type 1 infection. J Gen Virol90:927–934 [CrossRef][PubMed]
    [Google Scholar]
  25. Komatsu F., Yoshida S.. 1999; Characteristics of human T-lymphotropic virus type-1 (HTLV-1)-infected cell line MT-2, which is not killed by a natural killer cell line NK-92 but is killed by lymphokine-activated killer cells. Oncol Res11:213–218[PubMed]
    [Google Scholar]
  26. Manns A., Miley W. J., Wilks R. J., Morgan O. S., Hanchard B., Wharfe G., Cranston B., Maloney E., Welles S. L. et al. 1999; Quantitative proviral DNA and antibody levels in the natural history of HTLV-I infection. J Infect Dis180:1487–1493 [CrossRef][PubMed]
    [Google Scholar]
  27. Martelli-Palomino G., Pancotto J. A., Muniz Y. C., Mendes-Junior C. T., Castelli E. C., Massaro J. D., Krawice-Radanne I., Poras I., Rebmann V. et al. 2013; Polymorphic sites at the 3' untranslated region of the HLA-G gene are associated with differential hla-g soluble levels in the Brazilian and French population. PLoS One8:e71742 [CrossRef][PubMed]
    [Google Scholar]
  28. Moreau P., Flajollet S., Carosella E. D.. 2009; Non-classical transcriptional regulation of HLA-G: an update. J Cell Mol Med13:2973–2989 [CrossRef][PubMed]
    [Google Scholar]
  29. Nagai M., Osame M.. 2003; Human T-cell lymphotropic virus type I and neurological diseases. J Neurovirol9:228–235 [CrossRef][PubMed]
    [Google Scholar]
  30. Nagai M., Usuku K., Matsumoto W., Kodama D., Takenouchi N., Moritoyo T., Hashiguchi S., Ichinose M., Bangham C. R. et al. 1998; Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol4:586–593[PubMed][CrossRef]
    [Google Scholar]
  31. Poiesz B. J., Ruscetti F. W., Gazdar A. F., Bunn P. A., Minna J. D., Gallo R. C.. 1980; Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A77:7415–7419 [CrossRef][PubMed]
    [Google Scholar]
  32. Ratner L.. 2005; Human T cell lymphotropic virus-associated leukemia/lymphoma. Curr Opin Oncol17:469–473 [CrossRef][PubMed]
    [Google Scholar]
  33. Raymond M., Rousset F.. 1995; genepop (version 1.2), population genetics software for exact tests and ecumenicism. J Hered86:248–249
    [Google Scholar]
  34. Rizzo R., Bortolotti D., Bolzani S., Fainardi E.. 2014; HLA-G molecules in autoimmune diseases and infections. Front Immunol5:592 [CrossRef][PubMed]
    [Google Scholar]
  35. Rocha-Júnior M. C., Haddad R., Cilião Alves D. C., de Deus Wagatsuma V. M., Mendes-Junior C. T., Deghaide N. H., Takayanagui O. M., Covas D. T., Donadi E. A., Kashima S.. 2012; Interleukin-18 and interferon-gamma polymorphisms are implicated on proviral load and susceptibility to human T-lymphotropic virus type 1 infection. Tissue Antigens80:143–150 [CrossRef][PubMed]
    [Google Scholar]
  36. Rousseau P., Le Discorde M., Mouillot G., Marcou C., Carosella E. D., Moreau P.. 2003; The 14 bp deletion-insertion polymorphism in the 3' UT region of the HLA-G gene influences HLA-G mRNA stability. Hum Immunol64:1005–1010 [CrossRef][PubMed]
    [Google Scholar]
  37. Sabouri A. H., Saito M., Usuku K., Bajestan S. N., Mahmoudi M., Forughipour M., Sabouri Z., Abbaspour Z., Goharjoo M. E. et al. 2005; Differences in viral and host genetic risk factors for development of human T-cell lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis between Iranian and Japanese HTLV-1-infected individuals. J Gen Virol86:773–781 [CrossRef][PubMed]
    [Google Scholar]
  38. Segat L., Zupin L., Kim H.-Y., Catamo E., Thea D. M., Kankasa C., Aldrovandi G. M., Kuhn L., Crovella S.. 2014; HLA-G 14 bp deletion/insertion polymorphism and mother-to-child transmission of HIV. Tissue Antigens83:161–167 [CrossRef][PubMed]
    [Google Scholar]
  39. Soriano V., Poveda E., Vispo E., Labarga P., Rallón N., Barreiro P.. 2012; Pharmacogenetics of hepatitis C. J Antimicrob Chemother67:523–529 [CrossRef][PubMed]
    [Google Scholar]
  40. Stephens M., Smith N. J., Donnelly P.. 2001; A new statistical method for haplotype reconstruction from population data. Am J Hum Genet68:978–989 [CrossRef][PubMed]
    [Google Scholar]
  41. Tan Z., Randall G., Fan J., Camoretti-Mercado B., Brockman-Schneider R., Pan L., Solway J., Gern J. E., Lemanske R. F. et al. 2007; Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet81:829–834 [CrossRef][PubMed]
    [Google Scholar]
  42. Treviño A., Vicario J. L., Lopez M., Parra P., Benito R., Ortiz de Lejarazu R., Ramos J. M., Del Romero J., de Mendoza C., Soriano V.. 2013; Association between HLA alleles and HAM/TSP in individuals infected with HTLV-1. J Neurol260:2551–2555 [CrossRef][PubMed]
    [Google Scholar]
  43. Tripathi P., Agrawal S.. 2007; The role of human leukocyte antigen E and G in HIV infection. AIDS21:1395–1404 [CrossRef][PubMed]
    [Google Scholar]
  44. Verdonck K., González E., Van Dooren S., Vandamme A.-M., Vanham G., Gotuzzo E.. 2007; Human T-lymphotropic virus 1: recent knowledge about an ancient infection. Lancet Infect Dis7:266–281 [CrossRef][PubMed]
    [Google Scholar]
  45. Wang L., Zou Z.-Q., Wang K.. 2016; Clinical relevance of HLA gene variants in HBV infection. J Immunol Res2016:1–7 [CrossRef]
    [Google Scholar]
  46. Xu H.-H., Shi W.-W., Lin A., Yan W.-H.. 2014; HLA-G 3' untranslated region polymorphisms influence the susceptibility for human papillomavirus infection. Tissue Antigens84:216–222 [CrossRef][PubMed]
    [Google Scholar]
  47. Yamano Y., Nagai M., Brennan M., Mora C. A., Soldan S. S., Tomaru U., Takenouchi N., Izumo S., Osame M., Jacobson S.. 2002; Correlation of human T-cell lymphotropic virus type 1 (HTLV-1) mRNA with proviral DNA load, virus-specific CD8(+) T cells, and disease severity in HTLV-1-associated myelopathy (HAM/TSP). Blood99:88–94 [CrossRef][PubMed]
    [Google Scholar]
  48. Yang Y.-C., Chang T.-Y., Chen T.-C., Lin W.-S., Chang S.-C., Lee Y.-J.. 2014; Human leucocyte antigen-G polymorphisms are associated with cervical squamous cell carcinoma risk in Taiwanese women. Eur J Cancer50:469–474 [CrossRef][PubMed]
    [Google Scholar]
  49. Yie S. M., Li L. H., Xiao R., Librach C. L.. 2008; A single base-pair mutation in the 3'-untranslated region of HLA-G mRNA is associated with pre-eclampsia. Mol Hum Reprod14:649–653 [CrossRef][PubMed]
    [Google Scholar]
  50. Zheng X.-Q., Zhu F., Shi W. W., Lin A., Yan W.-H.. 2009; The HLA-G 14 bp insertion/deletion polymorphism is a putative susceptible factor for active human cytomegalovirus infection in children. Tissue Antigens74:317–321 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000559
Loading
/content/journal/jgv/10.1099/jgv.0.000559
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error