1887

Abstract

Human cytomegalovirus, a member of the herpesvirus family, can cause significant morbidity and mortality in immune compromised patients resulting from either primary lytic infection or reactivation from latency. Latent infection is associated with a restricted viral transcription programme compared to lytic infection which consists of defined protein coding RNAs but also includes a number of virally encoded microRNAs (miRNAs). One of these, miR-UL112-1, is known to target the major lytic IE72 transcript but, to date, a functional role for miR-UL112-1 during latent infection has not been shown. To address this, we have analysed latent infection in myeloid cells using a virus in which the target site for miR-UL112-1 in the 3′ UTR of IE72 was removed such that any IE72 RNA present during latent infection would no longer be subject to regulation by miR-UL112-1 through the RNAi pathway. Our data show that removal of the miR-UL112-1 target site in IE72 results in increased levels of IE72 RNA in experimentally latent primary monocytes. Furthermore, this resulted in induction of immediate early (IE) gene expression that is detectable by IE-specific cytotoxic T-cells (CTLs); no such CTL recognition of monocytes latently infected with wild-type virus was observed. We also recapitulated these findings in the more tractable THP-1 cell line model of latency. These observations argue that an important role for miR-UL112-1 during latency is to ensure tight control of lytic viral immediate early (IE) gene expression thereby preventing recognition of latently infected cells by the host's potent pre-existing anti-viral CTL response.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000546
2016-09-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/9/2387.html?itemId=/content/journal/jgv/10.1099/jgv.0.000546&mimeType=html&fmt=ahah

References

  1. Adler S. P..( 1983;). Transfusion-associated cytomegalovirus infections. . Rev Infect Dis 5: 977–993. [CrossRef] [PubMed]
    [Google Scholar]
  2. Albright E. R., Kalejta R. F..( 2013;). Myeloblastic cell lines mimic some but not all aspects of human cytomegalovirus experimental latency defined in primary CD34+ cell populations. . J Virol 87: 9802–9812. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chou S. W., Scott K. M..( 1988;). Rapid quantitation of cytomegalovirus and assay of neutralizing antibody by using monoclonal antibody to the major immediate-early viral protein. . J Clin Microbiol 26: 504–507.[PubMed]
    [Google Scholar]
  4. Dhuruvasan K., Sivasubramanian G., Pellett P. E..( 2011;). Roles of host and viral microRNAs in human cytomegalovirus biology. . Virus Res 157: 180–192. [CrossRef] [PubMed]
    [Google Scholar]
  5. Fu M., Gao Y., Zhou Q., Zhang Q., Peng Y., Tian K., Wang J., Zheng X..( 2014;). Human cytomegalovirus latent infection alters the expression of cellular and viral microRNA. . Gene 536: 272–278. [CrossRef] [PubMed]
    [Google Scholar]
  6. Gillespie G. M., Wills M. R., Appay V., O'Callaghan C., Murphy M., Smith N., Sissons P., Rowland-Jones S., Bell J. I., Moss P. A..( 2000;). Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8(+) T lymphocytes in healthy seropositive donors. . J Virol 74: 8140–8150. [CrossRef] [PubMed]
    [Google Scholar]
  7. Goldberger T., Mandelboim O..( 2014;). The use of microRNA by human viruses: lessons from NK cells and HCMV infection. . Semin Immunopathol 36: 659–674. [CrossRef] [PubMed]
    [Google Scholar]
  8. Goodrum F., Reeves M., Sinclair J., High K., Shenk T..( 2007;). Human cytomegalovirus sequences expressed in latently infected individuals promote a latent infection in vitro. . Blood 110: 937–945. [CrossRef] [PubMed]
    [Google Scholar]
  9. Grey F., Meyers H., White E. A., Spector D. H., Nelson J..( 2007;). A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. . PLoS Pathog 3: e163. [CrossRef] [PubMed]
    [Google Scholar]
  10. Grey F..( 2015;). Role of microRNAs in herpesvirus latency and persistence. . J Gen Virol 96: 739–751. [CrossRef] [PubMed]
    [Google Scholar]
  11. Griffiths P. D., Walter S..( 2005;). Cytomegalovirus. . Curr Opin Infect Dis 18: 241–245. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hahn G., Jores R., Mocarski E. S..( 1998;). Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. . Proc Natl Acad Sci U S A 95: 3937–3942. [CrossRef] [PubMed]
    [Google Scholar]
  13. Ho M..( 1990;). Epidemiology of cytomegalovirus infections. . Rev Infect Dis 12: S701–710. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hook L., Hancock M., Landais I., Grabski R., Britt W., Nelson J. A..( 2014a;). Cytomegalovirus microRNAs. . Curr Opin Virol 7: 40–46. [CrossRef]
    [Google Scholar]
  15. Hook L. M., Grey F., Grabski R., Tirabassi R., Doyle T., Hancock M., Landais I., Jeng S., McWeeney S. et al.( 2014b;). Cytomegalovirus miRNAs target secretory pathway genes to facilitate formation of the virion assembly compartment and reduce cytokine secretion. . Cell Host Microbe 15: 363–373. [CrossRef]
    [Google Scholar]
  16. Huang Y., Qi Y., Ma Y., He R., Ji Y., Sun Z., Ruan Q..( 2013;). The expression of interleukin-32 is activated by human cytomegalovirus infection and down regulated by hcmv-miR-UL112-1. . Virol J 10: 51. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kern F., Surel I. P., Brock C., Freistedt B., Radtke H., Scheffold A., Blasczyk R., Reinke P., Schneider-Mergener J. et al.( 1998;). T-cell epitope mapping by flow cytometry. . Nat Med 4: 975–978. [CrossRef] [PubMed]
    [Google Scholar]
  18. Keyes L. R., Bego M. G., Soland M., St Jeor S..( 2012a;). Cyclophilin A is required for efficient human cytomegalovirus DNA replication and reactivation. . J Gen Virol 93: 722–732. [CrossRef]
    [Google Scholar]
  19. Keyes L. R., Hargett D., Soland M., Bego M. G., Rossetto C. C., Almeida-Porada G., St. Jeor S..( 2012b;). HCMV protein LUNA is required for viral reactivation from latently infected primary CD14+ cells. . PLoS One 7: e52827. [CrossRef]
    [Google Scholar]
  20. Khaiboullina S. F., Maciejewski J. P., Crapnell K., Spallone P. A., Dean Stock A., Pari G. S., Zanjani E. D., Jeor S. S..( 2004;). Human cytomegalovirus persists in myeloid progenitors and is passed to the myeloid progeny in a latent form. . Br J Haematol 126: 410–417. [CrossRef] [PubMed]
    [Google Scholar]
  21. Khan N., Cobbold M., Keenan R., Moss P. A..( 2002;). Comparative analysis of CD8+ T cell responses against human cytomegalovirus proteins pp65 and immediate early 1 shows similarities in precursor frequency, oligoclonality, and phenotype. . J Infect Dis 185: 1025–1034. [CrossRef] [PubMed]
    [Google Scholar]
  22. Krishna B. A., Lau B., Jackson S. E., Wills M. R., Sinclair J. H., Poole E..( 2016;). Transient activation of human cytomegalovirus lytic gene expression during latency allows cytotoxic T cell killing of latently infected cells. . Sci Rep 6: 24674. [CrossRef] [PubMed]
    [Google Scholar]
  23. Lee S. H., Kalejta R. F., Kerry J., Semmes O. J., O'Connor C. M., Khan Z., Garcia B. A., Shenk T., Murphy E..( 2012;). BclAF1 restriction factor is neutralized by proteasomal degradation and microRNA repression during human cytomegalovirus infection. . Proc Natl Acad Sci U S A 109: 9575–9580. [CrossRef] [PubMed]
    [Google Scholar]
  24. Lee S. H., Albright E. R., Lee J. H., Jacobs D., Kalejta R. F..( 2015;). Cellular defense against latent colonization foiled by human cytomegalovirus UL138 protein. . Sci Adv 1: e1501164. [CrossRef] [PubMed]
    [Google Scholar]
  25. Mason G. M., Jackson S., Okecha G., Poole E., Sissons J. G., Sinclair J., Wills M. R..( 2013;). Human cytomegalovirus latency-associated proteins elicit immune-suppressive IL-10 producing CD4+ T cells. . PLoS Pathog 9: e1003635. [CrossRef] [PubMed]
    [Google Scholar]
  26. Mendelson M., Monard S., Sissons P., Sinclair J..( 1996;). Detection of endogenous human cytomegalovirus in CD34+ bone marrow progenitors. . J Gen Virol 77: 3099–3102. [CrossRef] [PubMed]
    [Google Scholar]
  27. Meshesha M. K., Bentwich Z., Solomon S. A., Avni Y. S..( 2016;). In vivo expression of human cytomegalovirus (HCMV) microRNAs during latency. . Gene 575: 101–107. [CrossRef] [PubMed]
    [Google Scholar]
  28. Murphy E., Vanícek J., Robins H., Shenk T., Levine A. J..( 2008;). Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. . Proc Natl Acad Sci U S A 105: 5453–5458. [CrossRef] [PubMed]
    [Google Scholar]
  29. Murphy J. C., Fischle W., Verdin E., Sinclair J. H..( 2002;). Control of cytomegalovirus lytic gene expression by histone acetylation. . EMBO J 21: 1112–1120. [CrossRef] [PubMed]
    [Google Scholar]
  30. O'Connor C. M., Murphy E. A..( 2012;). A myeloid progenitor cell line capable of supporting human cytomegalovirus latency and reactivation, resulting in infectious progeny. . J Virol 86: 9854–9865. [CrossRef] [PubMed]
    [Google Scholar]
  31. Poole E., Avdic S., Hodkinson J., Jackson S., Wills M., Slobedman B., Sinclair J..( 2014;). Latency-associated viral interleukin-10 (IL-10) encoded by human cytomegalovirus modulates cellular IL-10 and CCL8 secretion during latent infection through changes in the cellular microRNA hsa-miR-92a. . J Virol 88: 13947–13955. [CrossRef] [PubMed]
    [Google Scholar]
  32. Poole E., Lau J. C., Sinclair J..( 2015;). Latent infection of myeloid progenitors by human cytomegalovirus protects cells from FAS-mediated apoptosis through the cellular IL-10/PEA-15 pathway. . J Gen Virol 96: 2355–2359. [CrossRef] [PubMed]
    [Google Scholar]
  33. Rauwel B., Jang S. M., Cassano M., Kapopoulou A., Barde I., Trono D..( 2015;). Release of human cytomegalovirus from latency by a KAP1/TRIM28 phosphorylation switch. . eLife 4: e06068. [CrossRef]
    [Google Scholar]
  34. Reeves M. B., Lehner P. J., Sissons J. G., Sinclair J. H..( 2005a;). An in vitro model for the regulation of human cytomegalovirus latency and reactivation in dendritic cells by chromatin remodelling. . J Gen Virol 86: 2949–2954. [CrossRef]
    [Google Scholar]
  35. Reeves M. B., MacAry P. A., Lehner P. J., Sissons J. G. P., Sinclair J. H..( 2005b;). Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. . Proc Natl Acad Sci U S A 102: 4140–4145. [CrossRef]
    [Google Scholar]
  36. Reeves M. B., Breidenstein A., Compton T..( 2012;). Human cytomegalovirus activation of ERK and myeloid cell leukemia-1 protein correlates with survival of latently infected cells. . Proc Natl Acad Sci U S A 109: 588–681. [CrossRef] [PubMed]
    [Google Scholar]
  37. Ross S. A., Boppana S. B..( 2005;). Congenital cytomegalovirus infection: outcome and diagnosis. . Semin Pediatr Infect Dis 16: 44–49. [CrossRef] [PubMed]
    [Google Scholar]
  38. Rossetto C. C., Tarrant-Elorza M., Pari G. S..( 2013;). Cis and trans acting factors involved in human cytomegalovirus experimental and natural latent infection of CD14 (+) monocytes and CD34 (+) cells. . PLoS Pathog 9: e1003366. [CrossRef] [PubMed]
    [Google Scholar]
  39. Rubin R. H..( 1990;). Impact of cytomegalovirus infection on organ transplant recipients. . Rev Infect Dis 12: S754–766. [CrossRef] [PubMed]
    [Google Scholar]
  40. Shen Z. Z., Pan X., Miao L. F., Ye H. Q., Chavanas S., Davrinche C., McVoy M., Luo M. H..( 2014;). Comprehensive analysis of human cytomegalovirus microRNA expression during lytic and quiescent infection. . PLoS One 9: e88531. [CrossRef] [PubMed]
    [Google Scholar]
  41. Sinclair J., Sissons P..( 2006;). Latency and reactivation of human cytomegalovirus. . J Gen Virol 87: 1763–1779. [CrossRef] [PubMed]
    [Google Scholar]
  42. Sissons J. G., Carmichael A. J..( 2002;). Clinical aspects and management of cytomegalovirus infection. . J Infect 44: 78–83. [CrossRef] [PubMed]
    [Google Scholar]
  43. Slobedman B., Cao J. Z., Avdic S., Webster B., McAllery S., Cheung A. K., Tan J. C., Abendroth A..( 2010;). Human cytomegalovirus latent infection and associated viral gene expression. . Future Microbiol 5: 883–900. [CrossRef] [PubMed]
    [Google Scholar]
  44. Stern-Ginossar N., Gur C., Biton M., Horwitz E., Elboim M., Stanietsky N., Mandelboim M., Mandelboim O..( 2008;). Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. . Nat Immunol 9: 1065–1073. [CrossRef] [PubMed]
    [Google Scholar]
  45. Stern-Ginossar N., Saleh N., Goldberg M. D., Prichard M., Wolf D. G., Mandelboim O..( 2009;). Analysis of human cytomegalovirus-encoded microRNA activity during infection. . J Virol 83: 10684–10693. [CrossRef] [PubMed]
    [Google Scholar]
  46. Steven N. M., Leese A. M., Annels N. E., Lee S. P., Rickinson A. B..( 1996;). Epitope focusing in the primary cytotoxic T cell response to Epstein–Barr virus and its relationship to T cell memory. . J Exp Med 184: 1801–1813. [CrossRef] [PubMed]
    [Google Scholar]
  47. Söderberg-Nauclér C., Streblow D. N., Fish K. N., Allan-Yorke J., Smith P. P., Nelson J. A..( 2001;). Reactivation of latent human cytomegalovirus in CD14(+) monocytes is differentiation dependent. . J Virol 75: 7543–7554. [CrossRef] [PubMed]
    [Google Scholar]
  48. Tarrant-Elorza M., Rossetto C. C., Pari G. S..( 2014;). Maintenance and replication of the human cytomegalovirus genome during latency. . Cell Host Microbe 16: 43–54. [CrossRef] [PubMed]
    [Google Scholar]
  49. Taylor-Wiedeman J., Sissons J. G., Borysiewicz L. K., Sinclair J. H..( 1991;). Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. . J Gen Virol 72: 2059–2064. [CrossRef] [PubMed]
    [Google Scholar]
  50. Taylor-Wiedeman J., Sissons P., Sinclair J..( 1994;). Induction of endogenous human cytomegalovirus gene expression after differentiation of monocytes from healthy carriers. . J Virol 68: 1597–1604.[PubMed]
    [Google Scholar]
  51. Visconti M. R., Pennington J., Garner S. F., Allain J. P., Williamson L. M..( 2004;). Assessment of removal of human cytomegalovirus from blood components by leukocyte depletion filters using real-time quantitative PCR. . Blood 103: 1137–1139. [CrossRef] [PubMed]
    [Google Scholar]
  52. Warming S., Costantino N., Court D. L., Jenkins N. A., Copeland N. G..( 2005;). Simple and highly efficient BAC recombineering using galK selection. . Nucleic Acids Res 33: e36. [CrossRef] [PubMed]
    [Google Scholar]
  53. Weekes M. P., Tan S. Y., Poole E., Talbot S., Antrobus R., Smith D. L., Montag C., Gygi S. P., Sinclair J. H., Lehner P. J..( 2013;). Latency-associated degradation of the MRP1 drug transporter during latent human cytomegalovirus infection. . Science 340: 199–202. [CrossRef] [PubMed]
    [Google Scholar]
  54. Wills M. R., Poole E., Lau B., Krishna B., Sinclair J. H..( 2015;). The immunology of human cytomegalovirus latency: could latent infection be cleared by novel immunotherapeutic strategies?. Cell Mol Immunol 12: 128–138. [CrossRef] [PubMed]
    [Google Scholar]
  55. Zaia J. A..( 1990;). Epidemiology and pathogenesis of cytomegalovirus disease. . Semin Hematol 27: 5–10, discussion 28–19.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000546
Loading
/content/journal/jgv/10.1099/jgv.0.000546
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error