1887

Abstract

Human cytomegalovirus, a member of the herpesvirus family, can cause significant morbidity and mortality in immune compromised patients resulting from either primary lytic infection or reactivation from latency. Latent infection is associated with a restricted viral transcription programme compared to lytic infection which consists of defined protein coding RNAs but also includes a number of virally encoded microRNAs (miRNAs). One of these, miR-UL112-1, is known to target the major lytic IE72 transcript but, to date, a functional role for miR-UL112-1 during latent infection has not been shown. To address this, we have analysed latent infection in myeloid cells using a virus in which the target site for miR-UL112-1 in the 3′ UTR of IE72 was removed such that any IE72 RNA present during latent infection would no longer be subject to regulation by miR-UL112-1 through the RNAi pathway. Our data show that removal of the miR-UL112-1 target site in IE72 results in increased levels of IE72 RNA in experimentally latent primary monocytes. Furthermore, this resulted in induction of immediate early (IE) gene expression that is detectable by IE-specific cytotoxic T-cells (CTLs); no such CTL recognition of monocytes latently infected with wild-type virus was observed. We also recapitulated these findings in the more tractable THP-1 cell line model of latency. These observations argue that an important role for miR-UL112-1 during latency is to ensure tight control of lytic viral immediate early (IE) gene expression thereby preventing recognition of latently infected cells by the host's potent pre-existing anti-viral CTL response.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000546
2016-09-01
2020-02-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/9/2387.html?itemId=/content/journal/jgv/10.1099/jgv.0.000546&mimeType=html&fmt=ahah

References

  1. Adler S. P.. 1983; Transfusion-associated cytomegalovirus infections. Rev Infect Dis5:977–993 [CrossRef][PubMed]
    [Google Scholar]
  2. Albright E. R., Kalejta R. F.. 2013; Myeloblastic cell lines mimic some but not all aspects of human cytomegalovirus experimental latency defined in primary CD34+ cell populations. J Virol87:9802–9812 [CrossRef][PubMed]
    [Google Scholar]
  3. Chou S. W., Scott K. M.. 1988; Rapid quantitation of cytomegalovirus and assay of neutralizing antibody by using monoclonal antibody to the major immediate-early viral protein. J Clin Microbiol26:504–507[PubMed]
    [Google Scholar]
  4. Dhuruvasan K., Sivasubramanian G., Pellett P. E.. 2011; Roles of host and viral microRNAs in human cytomegalovirus biology. Virus Res157:180–192 [CrossRef][PubMed]
    [Google Scholar]
  5. Fu M., Gao Y., Zhou Q., Zhang Q., Peng Y., Tian K., Wang J., Zheng X.. 2014; Human cytomegalovirus latent infection alters the expression of cellular and viral microRNA. Gene536:272–278 [CrossRef][PubMed]
    [Google Scholar]
  6. Gillespie G. M., Wills M. R., Appay V., O'Callaghan C., Murphy M., Smith N., Sissons P., Rowland-Jones S., Bell J. I., Moss P. A.. 2000; Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8(+) T lymphocytes in healthy seropositive donors. J Virol74:8140–8150 [CrossRef][PubMed]
    [Google Scholar]
  7. Goldberger T., Mandelboim O.. 2014; The use of microRNA by human viruses: lessons from NK cells and HCMV infection. Semin Immunopathol36:659–674 [CrossRef][PubMed]
    [Google Scholar]
  8. Goodrum F., Reeves M., Sinclair J., High K., Shenk T.. 2007; Human cytomegalovirus sequences expressed in latently infected individuals promote a latent infection in vitro. Blood110:937–945 [CrossRef][PubMed]
    [Google Scholar]
  9. Grey F., Meyers H., White E. A., Spector D. H., Nelson J.. 2007; A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog3:e163 [CrossRef][PubMed]
    [Google Scholar]
  10. Grey F.. 2015; Role of microRNAs in herpesvirus latency and persistence. J Gen Virol96:739–751 [CrossRef][PubMed]
    [Google Scholar]
  11. Griffiths P. D., Walter S.. 2005; Cytomegalovirus. Curr Opin Infect Dis18:241–245 [CrossRef][PubMed]
    [Google Scholar]
  12. Hahn G., Jores R., Mocarski E. S.. 1998; Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc Natl Acad Sci U S A95:3937–3942 [CrossRef][PubMed]
    [Google Scholar]
  13. Ho M.. 1990; Epidemiology of cytomegalovirus infections. Rev Infect Dis12:S701–710 [CrossRef][PubMed]
    [Google Scholar]
  14. Hook L., Hancock M., Landais I., Grabski R., Britt W., Nelson J. A.. 2014a; Cytomegalovirus microRNAs. Curr Opin Virol7:40–46 [CrossRef]
    [Google Scholar]
  15. Hook L. M., Grey F., Grabski R., Tirabassi R., Doyle T., Hancock M., Landais I., Jeng S., McWeeney S. et al. 2014b; Cytomegalovirus miRNAs target secretory pathway genes to facilitate formation of the virion assembly compartment and reduce cytokine secretion. Cell Host Microbe15:363–373 [CrossRef]
    [Google Scholar]
  16. Huang Y., Qi Y., Ma Y., He R., Ji Y., Sun Z., Ruan Q.. 2013; The expression of interleukin-32 is activated by human cytomegalovirus infection and down regulated by hcmv-miR-UL112-1. Virol J10:51 [CrossRef][PubMed]
    [Google Scholar]
  17. Kern F., Surel I. P., Brock C., Freistedt B., Radtke H., Scheffold A., Blasczyk R., Reinke P., Schneider-Mergener J. et al. 1998; T-cell epitope mapping by flow cytometry. Nat Med4:975–978 [CrossRef][PubMed]
    [Google Scholar]
  18. Keyes L. R., Bego M. G., Soland M., St Jeor S.. 2012a; Cyclophilin A is required for efficient human cytomegalovirus DNA replication and reactivation. J Gen Virol93:722–732 [CrossRef]
    [Google Scholar]
  19. Keyes L. R., Hargett D., Soland M., Bego M. G., Rossetto C. C., Almeida-Porada G., St. Jeor S.. 2012b; HCMV protein LUNA is required for viral reactivation from latently infected primary CD14+ cells. PLoS One7:e52827 [CrossRef]
    [Google Scholar]
  20. Khaiboullina S. F., Maciejewski J. P., Crapnell K., Spallone P. A., Dean Stock A., Pari G. S., Zanjani E. D., Jeor S. S.. 2004; Human cytomegalovirus persists in myeloid progenitors and is passed to the myeloid progeny in a latent form. Br J Haematol126:410–417 [CrossRef][PubMed]
    [Google Scholar]
  21. Khan N., Cobbold M., Keenan R., Moss P. A.. 2002; Comparative analysis of CD8+ T cell responses against human cytomegalovirus proteins pp65 and immediate early 1 shows similarities in precursor frequency, oligoclonality, and phenotype. J Infect Dis185:1025–1034 [CrossRef][PubMed]
    [Google Scholar]
  22. Krishna B. A., Lau B., Jackson S. E., Wills M. R., Sinclair J. H., Poole E.. 2016; Transient activation of human cytomegalovirus lytic gene expression during latency allows cytotoxic T cell killing of latently infected cells. Sci Rep6:24674 [CrossRef][PubMed]
    [Google Scholar]
  23. Lee S. H., Kalejta R. F., Kerry J., Semmes O. J., O'Connor C. M., Khan Z., Garcia B. A., Shenk T., Murphy E.. 2012; BclAF1 restriction factor is neutralized by proteasomal degradation and microRNA repression during human cytomegalovirus infection. Proc Natl Acad Sci U S A109:9575–9580 [CrossRef][PubMed]
    [Google Scholar]
  24. Lee S. H., Albright E. R., Lee J. H., Jacobs D., Kalejta R. F.. 2015; Cellular defense against latent colonization foiled by human cytomegalovirus UL138 protein. Sci Adv1:e1501164 [CrossRef][PubMed]
    [Google Scholar]
  25. Mason G. M., Jackson S., Okecha G., Poole E., Sissons J. G., Sinclair J., Wills M. R.. 2013; Human cytomegalovirus latency-associated proteins elicit immune-suppressive IL-10 producing CD4+ T cells. PLoS Pathog9:e1003635 [CrossRef][PubMed]
    [Google Scholar]
  26. Mendelson M., Monard S., Sissons P., Sinclair J.. 1996; Detection of endogenous human cytomegalovirus in CD34+ bone marrow progenitors. J Gen Virol77:3099–3102 [CrossRef][PubMed]
    [Google Scholar]
  27. Meshesha M. K., Bentwich Z., Solomon S. A., Avni Y. S.. 2016; In vivo expression of human cytomegalovirus (HCMV) microRNAs during latency. Gene575:101–107 [CrossRef][PubMed]
    [Google Scholar]
  28. Murphy E., Vanícek J., Robins H., Shenk T., Levine A. J.. 2008; Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. Proc Natl Acad Sci U S A105:5453–5458 [CrossRef][PubMed]
    [Google Scholar]
  29. Murphy J. C., Fischle W., Verdin E., Sinclair J. H.. 2002; Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J21:1112–1120 [CrossRef][PubMed]
    [Google Scholar]
  30. O'Connor C. M., Murphy E. A.. 2012; A myeloid progenitor cell line capable of supporting human cytomegalovirus latency and reactivation, resulting in infectious progeny. J Virol86:9854–9865 [CrossRef][PubMed]
    [Google Scholar]
  31. Poole E., Avdic S., Hodkinson J., Jackson S., Wills M., Slobedman B., Sinclair J.. 2014; Latency-associated viral interleukin-10 (IL-10) encoded by human cytomegalovirus modulates cellular IL-10 and CCL8 secretion during latent infection through changes in the cellular microRNA hsa-miR-92a. J Virol88:13947–13955 [CrossRef][PubMed]
    [Google Scholar]
  32. Poole E., Lau J. C., Sinclair J.. 2015; Latent infection of myeloid progenitors by human cytomegalovirus protects cells from FAS-mediated apoptosis through the cellular IL-10/PEA-15 pathway. J Gen Virol96:2355–2359 [CrossRef][PubMed]
    [Google Scholar]
  33. Rauwel B., Jang S. M., Cassano M., Kapopoulou A., Barde I., Trono D.. 2015; Release of human cytomegalovirus from latency by a KAP1/TRIM28 phosphorylation switch. eLife4:e06068 [CrossRef]
    [Google Scholar]
  34. Reeves M. B., Lehner P. J., Sissons J. G., Sinclair J. H.. 2005a; An in vitro model for the regulation of human cytomegalovirus latency and reactivation in dendritic cells by chromatin remodelling. J Gen Virol86:2949–2954 [CrossRef]
    [Google Scholar]
  35. Reeves M. B., MacAry P. A., Lehner P. J., Sissons J. G. P., Sinclair J. H.. 2005b; Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci U S A102:4140–4145 [CrossRef]
    [Google Scholar]
  36. Reeves M. B., Breidenstein A., Compton T.. 2012; Human cytomegalovirus activation of ERK and myeloid cell leukemia-1 protein correlates with survival of latently infected cells. Proc Natl Acad Sci U S A109:588–681 [CrossRef][PubMed]
    [Google Scholar]
  37. Ross S. A., Boppana S. B.. 2005; Congenital cytomegalovirus infection: outcome and diagnosis. Semin Pediatr Infect Dis16:44–49 [CrossRef][PubMed]
    [Google Scholar]
  38. Rossetto C. C., Tarrant-Elorza M., Pari G. S.. 2013; Cis and trans acting factors involved in human cytomegalovirus experimental and natural latent infection of CD14 (+) monocytes and CD34 (+) cells. PLoS Pathog9:e1003366 [CrossRef][PubMed]
    [Google Scholar]
  39. Rubin R. H.. 1990; Impact of cytomegalovirus infection on organ transplant recipients. Rev Infect Dis12:S754–766 [CrossRef][PubMed]
    [Google Scholar]
  40. Shen Z. Z., Pan X., Miao L. F., Ye H. Q., Chavanas S., Davrinche C., McVoy M., Luo M. H.. 2014; Comprehensive analysis of human cytomegalovirus microRNA expression during lytic and quiescent infection. PLoS One9:e88531 [CrossRef][PubMed]
    [Google Scholar]
  41. Sinclair J., Sissons P.. 2006; Latency and reactivation of human cytomegalovirus. J Gen Virol87:1763–1779 [CrossRef][PubMed]
    [Google Scholar]
  42. Sissons J. G., Carmichael A. J.. 2002; Clinical aspects and management of cytomegalovirus infection. J Infect44:78–83 [CrossRef][PubMed]
    [Google Scholar]
  43. Slobedman B., Cao J. Z., Avdic S., Webster B., McAllery S., Cheung A. K., Tan J. C., Abendroth A.. 2010; Human cytomegalovirus latent infection and associated viral gene expression. Future Microbiol5:883–900 [CrossRef][PubMed]
    [Google Scholar]
  44. Stern-Ginossar N., Gur C., Biton M., Horwitz E., Elboim M., Stanietsky N., Mandelboim M., Mandelboim O.. 2008; Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat Immunol9:1065–1073 [CrossRef][PubMed]
    [Google Scholar]
  45. Stern-Ginossar N., Saleh N., Goldberg M. D., Prichard M., Wolf D. G., Mandelboim O.. 2009; Analysis of human cytomegalovirus-encoded microRNA activity during infection. J Virol83:10684–10693 [CrossRef][PubMed]
    [Google Scholar]
  46. Steven N. M., Leese A. M., Annels N. E., Lee S. P., Rickinson A. B.. 1996; Epitope focusing in the primary cytotoxic T cell response to Epstein–Barr virus and its relationship to T cell memory. J Exp Med184:1801–1813 [CrossRef][PubMed]
    [Google Scholar]
  47. Söderberg-Nauclér C., Streblow D. N., Fish K. N., Allan-Yorke J., Smith P. P., Nelson J. A.. 2001; Reactivation of latent human cytomegalovirus in CD14(+) monocytes is differentiation dependent. J Virol75:7543–7554 [CrossRef][PubMed]
    [Google Scholar]
  48. Tarrant-Elorza M., Rossetto C. C., Pari G. S.. 2014; Maintenance and replication of the human cytomegalovirus genome during latency. Cell Host Microbe16:43–54 [CrossRef][PubMed]
    [Google Scholar]
  49. Taylor-Wiedeman J., Sissons J. G., Borysiewicz L. K., Sinclair J. H.. 1991; Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol72:2059–2064 [CrossRef][PubMed]
    [Google Scholar]
  50. Taylor-Wiedeman J., Sissons P., Sinclair J.. 1994; Induction of endogenous human cytomegalovirus gene expression after differentiation of monocytes from healthy carriers. J Virol68:1597–1604[PubMed]
    [Google Scholar]
  51. Visconti M. R., Pennington J., Garner S. F., Allain J. P., Williamson L. M.. 2004; Assessment of removal of human cytomegalovirus from blood components by leukocyte depletion filters using real-time quantitative PCR. Blood103:1137–1139 [CrossRef][PubMed]
    [Google Scholar]
  52. Warming S., Costantino N., Court D. L., Jenkins N. A., Copeland N. G.. 2005; Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res33:e36 [CrossRef][PubMed]
    [Google Scholar]
  53. Weekes M. P., Tan S. Y., Poole E., Talbot S., Antrobus R., Smith D. L., Montag C., Gygi S. P., Sinclair J. H., Lehner P. J.. 2013; Latency-associated degradation of the MRP1 drug transporter during latent human cytomegalovirus infection. Science340:199–202 [CrossRef][PubMed]
    [Google Scholar]
  54. Wills M. R., Poole E., Lau B., Krishna B., Sinclair J. H.. 2015; The immunology of human cytomegalovirus latency: could latent infection be cleared by novel immunotherapeutic strategies?. Cell Mol Immunol12:128–138 [CrossRef][PubMed]
    [Google Scholar]
  55. Zaia J. A.. 1990; Epidemiology and pathogenesis of cytomegalovirus disease. Semin Hematol27:5–10 discussion 28–19[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000546
Loading
/content/journal/jgv/10.1099/jgv.0.000546
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error