1887

Abstract

Reassortment of their segmented genomes allows influenza A viruses (IAV) to gain new characteristics, which potentially enable them to cross the species barrier and infect new hosts. Improved replication was observed for reassortants of the strictly avian IAV A/FPV/Rostock/34 (FPV, H7N1) containing the NS segment from A/Goose/Guangdong/1/1996 (GD, H5N1), but not for reassortants containing the NS segment of A/Mallard/NL/12/2000 (MA, H7N3). The NS1 of GD and MA differ only in 8 aa positions. Here, we show that efficient replication of FPV-NS-derived mutants was linked to the presence of a single substitution (D74N) and more prominently to a triple substitution (P3S+R41K+D74N) in the NS1 protein. The substitution(s) led to (i) increased virus titres, (ii) larger plaque sizes and (iii) increased levels and faster kinetics of viral mRNA and protein accumulation in mammalian cells. Interestingly, the NS1 substitutions did not affect viral growth characteristics in avian cells. Furthermore, we show that an FPV mutant with N74 in the NS1 (already possessing S3+K41) is able to replicate and cause disease in mice, demonstrating a key role of NS1 in the adaptation of avian IAV to mammalian hosts. Our data suggest that (i) adaptation to mammalian hosts does not necessarily compromise replication in the natural (avian) host and (ii) very few genetic changes may pave the way for zoonotic transmission. The study reinforces the need for close surveillance and characterization of circulating avian IAV to identify genetic signatures that indicate a potential risk for efficient transmission of avian strains to mammalian hosts.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000542
2016-09-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/9/2135.html?itemId=/content/journal/jgv/10.1099/jgv.0.000542&mimeType=html&fmt=ahah

References

  1. Auewarakul P., Suptawiwat O., Kongchanagul A., Sangma C., Suzuki Y., Ungchusak K., Louisirirotchanakul S., Lerdsamran H., Pooruk P. et al.( 2007;). An avian influenza H5N1 virus that binds to a human-type receptor. . J Virol 81: 9950–9955. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bao Y., Bolotov P., Dernovoy D., Kiryutin B., Zaslavsky L., Tatusova T., Ostell J., Lipman D..( 2008;). The influenza virus resource at the National Center for Biotechnology Information. . J Virol 82: 596–601. [CrossRef] [PubMed]
    [Google Scholar]
  3. Basler C. F., Reid A. H., Dybing J. K., Janczewski T. A., Fanning T. G., Zheng H., Salvatore M., Perdue M. L., Swayne D. E. et al.( 2001;). Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. . Proc Natl Acad Sci U S A 98: 2746–2751. [CrossRef]
    [Google Scholar]
  4. Butt K. M., Smith G. J., Chen H., Zhang L. J., Leung Y. H., Xu K. M., Lim W., Webster R. G., Yuen K. Y. et al.( 2005;). Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. . J Clin Microbiol 43: 5760–5767. [CrossRef] [PubMed]
    [Google Scholar]
  5. Carrillo B., Choi J. M., Bornholdt Z. A., Sankaran B., Rice A. P., Prasad B..( 2014;). The influenza A virus protein NS1 displays structural polymorphism. . J Virol 88: 4113–4122. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cauldwell A., Long J. S., Moncorgé O., Barclay W. S..( 2014;). Viral determinants of influenza A virus host range. . J Gen Virol 95: 1193–1210. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chen J., Deng Y. M..( 2009;). Influenza virus antigenic variation, host antibody production and new approach to control epidemics. . Virol J 6: 30. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chen G., Liu C. H., Zhou L., Krug R. M..( 2014;). Cellular DDX21 RNA helicase inhibits influenza A virus replication but is counteracted by the viral NS1 protein. . Cell Host Microbe 15: 484–493. [CrossRef] [PubMed]
    [Google Scholar]
  9. Cheng V. C., Chan J. F., Wen X., Wu W. L., Que T. L., Chen H., Chan K. H., Yuen K. Y..( 2011;). Infection of immunocompromised patients by avian H9N2 influenza A virus. . J Infect 62: 394–399. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chutinimitkul S., van Riel D., Munster V. J., van den Brand J. M., Rimmelzwaan G. F., Kuiken T., Osterhaus A. D., Fouchier R. A., de Wit E..( 2010;). In vitro assessment of attachment pattern and replication efficiency of H5N1 influenza A viruses with altered receptor specificity. . J Virol 84: 6825–6833. [CrossRef] [PubMed]
    [Google Scholar]
  11. Dengler L., Kühn N., Shin D. L., Hatesuer B., Schughart K., Wilk E, Kuhn N..( 2014;). Cellular changes in blood indicate severe respiratory disease during influenza infections in mice. . PLoS One 9: e103149. [CrossRef] [PubMed]
    [Google Scholar]
  12. Donelan N. R., Basler C. F., García-Sastre A..( 2003;). A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice. . J Virol 77: 13257–13266. [CrossRef] [PubMed]
    [Google Scholar]
  13. Dundon W. G., Capua I..( 2009;). A closer look at the NS1 of influenza virus. . Viruses 1: 1057–1072. [CrossRef] [PubMed]
    [Google Scholar]
  14. Falcón A. M., Marión R. M., Zürcher T., Gómez P., Portela A., Nieto A., Ortín J..( 2004;). Defective RNA replication and late gene expression in temperature-sensitive influenza viruses expressing deleted forms of the NS1 protein. . J Virol 78: 3880–3888. [CrossRef] [PubMed]
    [Google Scholar]
  15. Fodor E., Palese P., Brownlee G. G., Garcia-Sastre A..( 1998;). Attenuation of influenza A virus mRNA levels by promoter mutations. . J Virol 72: 6283–6290.
    [Google Scholar]
  16. Fouchier R. A. M., Schneeberger P. M., Rozendaal F. W., Broekman J. M., Kemink S. A. G., Munster V., Kuiken T., Rimmelzwaan G. F., Schutten M. et al.( 2004;). Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. . Proc Natl Acad Sci U S A 101: 1356–1361. [CrossRef]
    [Google Scholar]
  17. Gao R., Cao B., Hu Y., Feng Z., Wang D., Hu W., Chen J., Jie Z., Qiu H. et al.( 2013;). Human infection with a novel avian-origin influenza A (H7N9) virus. . N Engl J Med 368: 1888–1897. [CrossRef] [PubMed]
    [Google Scholar]
  18. Hale B. G., Randall R. E., Ortín J., Jackson D..( 2008;). The multifunctional NS1 protein of influenza A viruses. . J Gen Virol 89: 2359–2376. [CrossRef] [PubMed]
    [Google Scholar]
  19. Hale B. G..( 2014;). Conformational plasticity of the influenza A virus NS1 protein. . J Gen Virol 95: 2099–2105. [CrossRef]
    [Google Scholar]
  20. Hatta M., Gao P., Halfmann P., Kawaoka Y..( 2001;). Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. . Science 293: 1840–1842. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hoffmann E., Neumann G., Kawaoka Y., Hobom G., Webster R. G..( 2000;). A DNA transfection system for generation of influenza A virus from eight plasmids. . Proc Natl Acad Sci U S A 97: 6108–6113. [CrossRef] [PubMed]
    [Google Scholar]
  22. Hulse D. J., Webster R. G., Russell R. J., Perez D. R..( 2004;). Molecular determinants within the surface proteins involved in the pathogenicity of H5N1 influenza viruses in chickens. . J Virol 78: 9954–9964. [CrossRef] [PubMed]
    [Google Scholar]
  23. Imai H., Shinya K., Takano R., Kiso M., Muramoto Y., Sakabe S., Murakami S., Ito M., Yamada S. et al.( 2010;). The HA and NS genes of human H5N1 influenza A virus contribute to high virulence in ferrets. . PLoS Pathog 6: e1001106. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kuo R. L., Krug R. M..( 2009;). Influenza a virus polymerase is an integral component of the CPSF30-NS1A protein complex in infected cells. . J Virol 83: 1611–1616. [CrossRef] [PubMed]
    [Google Scholar]
  25. Li S. Q., Orlich M., Rott R..( 1990;). Generation of seal influenza virus variants pathogenic for chickens, because of hemagglutinin cleavage site changes. . J Virol 64: 3297–3303.[PubMed]
    [Google Scholar]
  26. Li Z., Chen H., Jiao P., Deng G., Tian G., Li Y., Hoffmann E., Webster R. G., Matsuoka Y., Yu K..( 2005;). Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. . J Virol 79: 12058–12064. [CrossRef] [PubMed]
    [Google Scholar]
  27. Li W., Noah J. W., Noah D. L..( 2011;). Alanine substitutions within a linker region of the influenza A virus non-structural protein 1 alter its subcellular localization and attenuate virus replication. . J Gen Virol 92: 1832–1842. [CrossRef] [PubMed]
    [Google Scholar]
  28. Lin L., Li Y., Pyo H. M., Lu X., Raman S. N., Liu Q., Brown E. G., Zhou Y..( 2012;). Identification of RNA helicase A as a cellular factor that interacts with influenza A virus NS1 protein and its role in the virus life cycle. . J Virol 86: 1942–1954. [CrossRef] [PubMed]
    [Google Scholar]
  29. Long J.-X., Peng D.-X., Liu Y.-L., Wu Y.-T., Liu X.-F..( 2008;). Virulence of H5N1 avian influenza virus enhanced by a 15-nucleotide deletion in the viral nonstructural gene. . Virus Genes 36: 471–478. [CrossRef]
    [Google Scholar]
  30. Ma W., Brenner D., Wang Z., Dauber B., Ehrhardt C., Högner K., Herold S., Ludwig S., Wolff T. et al.( 2010;). The NS segment of an H5N1 highly pathogenic avian influenza virus (HPAIV) is sufficient to alter replication efficiency, cell tropism, and host range of an H7N1 HPAIV. . J Virol 84: 2122–2133. [CrossRef] [PubMed]
    [Google Scholar]
  31. Mänz B., Schwemmle M., Brunotte L..( 2013;). Adaptation of avian influenza A virus polymerase in mammals to overcome the host species barrier. . J Virol 87: 7200–7209. [CrossRef] [PubMed]
    [Google Scholar]
  32. Marion R. M., Aragon T., Beloso A., Nieto A., Ortin J..( 1997a;). The N-terminal half of the influenza virus NS1 protein is sufficient for nuclear retention of mRNA and enhancement of viral mRNA translation. . Nucleic Acids Res 25: 4271–4277. [CrossRef]
    [Google Scholar]
  33. Marión R. M., Zürcher T., de la Luna S., Ortin J..( 1997b;). Influenza virus NS1 protein interacts with viral transcription-replication complexes in vivo. . J Gen Virol 78: 2447–2451. [CrossRef]
    [Google Scholar]
  34. Matrosovich M., Tuzikov A., Bovin N., Gambaryan A., Klimov A., Castrucci M. R., Donatelli I., Kawaoka Y..( 2000;). Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. . J Virol 74: 8502–8512. [CrossRef] [PubMed]
    [Google Scholar]
  35. Matrosovich M. N., Matrosovich T. Y., Gray T., Roberts N. A., Klenk H. D..( 2004;). Human and avian influenza viruses target different cell types in cultures of human airway epithelium. . Proc Natl Acad Sci U S A 101: 4620–4624. [CrossRef] [PubMed]
    [Google Scholar]
  36. Melén K., Kinnunen L., Fagerlund R., Ikonen N., Twu K. Y., Krug R. M., Julkunen I..( 2007;). Nuclear and nucleolar targeting of influenza A virus NS1 protein: striking differences between different virus subtypes. . J Virol 81: 5995–6006. [CrossRef] [PubMed]
    [Google Scholar]
  37. Min J. Y., Li S., Sen G. C., Krug R. M..( 2007;). A site on the influenza A virus NS1 protein mediates both inhibition of PKR activation and temporal regulation of viral RNA synthesis. . Virology 363: 236–243. [CrossRef] [PubMed]
    [Google Scholar]
  38. Mostafa A., Kanrai P., Ziebuhr J., Pleschka S..( 2013;). Improved dual promotor-driven reverse genetics system for influenza viruses. . J Virol Methods 193: 603–610. [CrossRef] [PubMed]
    [Google Scholar]
  39. Mostafa A., Kanrai P., Petersen H., Ibrahim S., Rautenschlein S., Pleschka S..( 2015;). Efficient generation of recombinant influenza A viruses employing a new approach to overcome the genetic instability of HA segments. . PLoS One 10: e0116917. [CrossRef] [PubMed]
    [Google Scholar]
  40. Nelson M. I., Holmes E. C..( 2007;). The evolution of epidemic influenza. . Nat Rev Genet 8: 196–205. [CrossRef] [PubMed]
    [Google Scholar]
  41. Ostrowsky B., Huang A., Terry W., Anton D., Brunagel B., Traynor L., Abid S., Johnson G., Kacica M. et al.( 2012;). Low pathogenic avian influenza A (H7N2) virus infection in immunocompromised adult, New York, USA, 2003. . Emerg Infect Dis 18: 1128–1131. [CrossRef] [PubMed]
    [Google Scholar]
  42. Peiris M., Yuen K. Y., Leung C. W., Chan K. H., Ip P. L., Lai R. W., Orr W. K., Shortridge K. F..( 1999;). Human infection with influenza H9N2. . Lancet 354: 916–917. [CrossRef] [PubMed]
    [Google Scholar]
  43. Pleschka S., Jaskunas R., Engelhardt O. G., Zürcher T., Palese P., García-Sastre A..( 1996;). A plasmid-based reverse genetics system for influenza A virus. . J Virol 70: 4188–4192.[PubMed]
    [Google Scholar]
  44. Pleschka S., Wolff T., Ehrhardt C., Hobom G., Planz O., Rapp U. R., Ludwig S..( 2001;). Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. . Nat Cell Biol 3: 301–305. [CrossRef] [PubMed]
    [Google Scholar]
  45. Rameix-Welti M. A., Tomoiu A., Dos Santos Afonso E., van der Werf S., Naffakh N..( 2009;). Avian Influenza A virus polymerase association with nucleoprotein, but not polymerase assembly, is impaired in human cells during the course of infection. . J Virol 83: 1320–1331. [CrossRef] [PubMed]
    [Google Scholar]
  46. Robb N. C., Chase G., Bier K., Vreede F. T., Shaw P. C., Naffakh N., Schwemmle M., Fodor E..( 2011;). The influenza A virus NS1 protein interacts with the nucleoprotein of viral ribonucleoprotein complexes. . J Virol 85: 5228–5231. [CrossRef] [PubMed]
    [Google Scholar]
  47. Rogers G. N., Paulson J. C., Daniels R. S., Skehel J. J., Wilson I. A., Wiley D. C..( 1983;). Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. . Nature 304: 76–78. [CrossRef] [PubMed]
    [Google Scholar]
  48. Schmier S., Mostafa A., Haarmann T., Bannert N., Ziebuhr J., Veljkovic V., Dietrich U., Pleschka S..( 2015;). In silico prediction and experimental confirmation of HA residues conferring enhanced human receptor specificity of H5N1 influenza A viruses. . Sci Rep 5: 10.1038/srep11434. [CrossRef]
    [Google Scholar]
  49. Seo S. H., Hoffmann E., Webster R. G..( 2002;). Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. . Nat Med 8: 950–954. [CrossRef] [PubMed]
    [Google Scholar]
  50. Shimizu K., Handa H., Nakada S., Nagata K..( 1994;). Regulation of influenza virus RNA polymerase activity by cellular and viral factors. . Nucleic Acids Res 22: 5047–5053. [CrossRef] [PubMed]
    [Google Scholar]
  51. Tweed S. A., Skowronski D. M., David S. T., Larder A., Petric M., Lees W., Li Y., Katz J., Krajden M. et al.( 2004;). Human illness from avian influenza H7N3, British Columbia. . Emerg Infect Dis 10: 2196–2199. [CrossRef] [PubMed]
    [Google Scholar]
  52. Vogl T., Tenbrock K., Ludwig S., Leukert N., Ehrhardt C., van Zoelen M. A. D., Nacken W., Foell D., van der Poll T. et al.( 2007;). Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. . Nat Med 13: 1042–1049. [CrossRef]
    [Google Scholar]
  53. Wagner R., Wolff T., Herwig A., Pleschka S., Klenk H.-D..( 2000;). Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. . J Virol 74: 6316–6323. [CrossRef]
    [Google Scholar]
  54. Wang W., Riedel K., Lynch P., Chien C. Y., Montelione G. T., Krug R. M..( 1999;). RNA binding by the novel helical domain of the influenza virus NS1 protein requires its dimer structure and a small number of specific basic amino acids. . RNA 5: 195–205. [CrossRef] [PubMed]
    [Google Scholar]
  55. Wang Z., Robb N. C., Lenz E., Wolff T., Fodor E., Pleschka S..( 2010;). NS reassortment of an H7-type highly pathogenic avian influenza virus affects its propagation by altering the regulation of viral RNA production and antiviral host response. . J Virol 84: 11323–11335. [CrossRef]
    [Google Scholar]
  56. Wolstenholme A. J., Barrett T., Nichol S. T., Mahy B. W..( 1980;). Influenza virus-specific RNA and protein syntheses in cells infected with temperature-sensitive mutants defective in the genome segment encoding nonstructural proteins. . J Virol 35: 1–7.[PubMed]
    [Google Scholar]
  57. Yamada S., Suzuki Y., Suzuki T., Le M. Q., Nidom C. A., Sakai-Tagawa Y., Muramoto Y., Ito M., Kiso M. et al.( 2006;). Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. . Nature 444: 378–382. [CrossRef] [PubMed]
    [Google Scholar]
  58. Yamada S., Hatta M., Staker B. L., Watanabe S., Imai M., Shinya K., Sakai-Tagawa Y., Ito M., Ozawa M. et al.( 2010;). Biological and structural characterization of a host-adapting amino acid in influenza virus. . PLoS Pathog 6: e1001034. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000542
Loading
/content/journal/jgv/10.1099/jgv.0.000542
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error