1887

Abstract

Retrovirus pseudotypes are a highly tractable model used to study the entry pathways of enveloped viruses. This model has been extensively applied to the study of the hepatitis C virus (HCV) entry pathway, preclinical screening of antiviral antibodies and for assessing the phenotype of patient-derived viruses using HCV pseudoparticles (HCVpp) possessing the HCV E1 and E2 glycoproteins. However, not all patient-isolated clones produce particles that are infectious in this model. This study investigated factors that might limit phenotyping of patient-isolated HCV glycoproteins. Genetically related HCV glycoproteins from quasispecies in individual patients were discovered to behave very differently in this entry model. Empirical optimization of the ratio of packaging construct and glycoprotein-encoding plasmid was required for successful HCVpp genesis for different clones. The selection of retroviral packaging construct also influenced the function of HCV pseudoparticles. Some glycoprotein constructs tolerated a wide range of assay parameters, while others were much more sensitive to alterations. Furthermore, glycoproteins previously characterized as unable to mediate entry were found to be functional. These findings were validated using chimeric cell-cultured HCV bearing these glycoproteins. Using the same empirical approach we demonstrated that generation of infectious ebolavirus pseudoviruses (EBOVpv) was also sensitive to the amount and ratio of plasmids used, and that protocols for optimal production of these pseudoviruses are dependent on the exact virus glycoprotein construct. These findings demonstrate that it is crucial for studies utilizing pseudoviruses to conduct empirical optimization of pseudotype production for each specific glycoprotein sequence to achieve optimal titres and facilitate accurate phenotyping.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000537
2016-09-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/9/2265.html?itemId=/content/journal/jgv/10.1099/jgv.0.000537&mimeType=html&fmt=ahah

References

  1. Bailey J. R., Wasilewski L. N., Snider A. E., El-Diwany R., Osburn W. O., Keck Z., Foung S. K., Ray S. C.. 2015; Naturally selected hepatitis C virus polymorphisms confer broad neutralizing antibody resistance. J Clin Invest125:437–447 [CrossRef][PubMed]
    [Google Scholar]
  2. Bartosch B., Bukh J., Meunier J.-C., Granier C., Engle R. E., Blackwelder W. C., Emerson S. U., Cosset F.-L., Purcell R. H.. 2003a; In vitro assay for neutralizing antibody to hepatitis C virus: Evidence for broadly conserved neutralization epitopes. Proc Natl Acad Sci U S A100:14199–14204 [CrossRef]
    [Google Scholar]
  3. Bartosch B., Dubuisson J., Cosset F.-L.. 2003b; Infectious hepatitis C virus pseudo-particles containing functional E1–E2 envelope protein complexes. J Exp Med197:633–642 [CrossRef]
    [Google Scholar]
  4. Bartosch B., Vitelli A., Granier C., Goujon C., Dubuisson J., Pascale S., Scarselli E., Cortese R., Nicosia A., Cosset F.-L.. 2003c; Cell entry of hepatitis C virus requires a set of co-receptors that include the cd81 tetraspanin and the sr-b1 scavenger receptor. J Biol Chem278:41624–41630 [CrossRef]
    [Google Scholar]
  5. Bouard D., Sandrin V., Boson B., Nègre D., Thomas G., Granier C., Cosset F. L.. 2007; An acidic cluster of the cytoplasmic tail of the RD114 virus glycoprotein controls assembly of retroviral envelopes. Traffic8:835–847 [CrossRef][PubMed]
    [Google Scholar]
  6. Brown R. J., Juttla V. S., Tarr A. W., Finnis R., Irving W. L., Hemsley S., Flower D. R., Borrow P., Ball J. K.. 2005; Evolutionary dynamics of hepatitis C virus envelope genes during chronic infection. J Gen Virol86:1931–1942 [CrossRef][PubMed]
    [Google Scholar]
  7. Carlsen T. H., Pedersen J., Prentoe J. C., Giang E., Keck Z. Y., Mikkelsen L. S., Law M., Foung S. K., Bukh J.. 2014; Breadth of neutralization and synergy of clinically relevant human monoclonal antibodies against HCV genotypes 1a, 1b, 2a, 2b, 2c, and 3a. Hepatology60:1551–1562 [CrossRef][PubMed]
    [Google Scholar]
  8. Chapel C., Garcia C., Bartosch B., Roingeard P., Zitzmann N., Cosset F. L., Dubuisson J., Dwek R. A., Trépo C. et al. 2007; Reduction of the infectivity of hepatitis C virus pseudoparticles by incorporation of misfolded glycoproteins induced by glucosidase inhibitors. J Gen Virol88:1133–1143 [CrossRef][PubMed]
    [Google Scholar]
  9. Choukhi A., Ung S., Wychowski C., Dubuisson J.. 1998; Involvement of endoplasmic reticulum chaperones in the folding of hepatitis C virus glycoproteins. J Virol72:3851–3858[PubMed]
    [Google Scholar]
  10. Christodoulopoulos I., Cannon P. M.. 2001; Sequences in the cytoplasmic tail of the gibbon ape leukemia virus envelope protein that prevent its incorporation into lentivirus vectors. J Virol75:4129–4138 [CrossRef][PubMed]
    [Google Scholar]
  11. Christodoulopoulos I., Droniou-Bonzom M. E., Oldenburg J. E., Cannon P. M.. 2010; Vpu-dependent block to incorporation of GaLV Env into lentiviral vectors. Retrovirology7: [CrossRef][PubMed]
    [Google Scholar]
  12. Curran R., Jameson C. L., Craggs J. K., Grabowska A. M., Thomson B. J., Robins A., Irving W. L., Ball J. K.. 2002; Evolutionary trends of the first hypervariable region of the hepatitis C virus E2 protein in individuals with differing liver disease severity. J Gen Virol83:11–23 [CrossRef][PubMed]
    [Google Scholar]
  13. Dowd K. A., Netski D. M., Wang X. H., Cox A. L., Ray S. C.. 2009; Selection pressure from neutralizing antibodies drives sequence evolution during acute infection with hepatitis C virus. Gastroenterology136:2377–2386 [CrossRef][PubMed]
    [Google Scholar]
  14. Evans M. J., von Hahn T., Tscherne D. M., Syder A. J., Panis M., Wölk B., Hatziioannou T., McKeating J. A., Bieniasz P. D., Rice C. M.. 2007; Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature446:801–805 [CrossRef][PubMed]
    [Google Scholar]
  15. Fafi-Kremer S., Fofana I., Soulier E., Carolla P., Meuleman P., Leroux-Roels G., Patel A. H., Cosset F. L., Pessaux P. et al. 2010; Viral entry and escape from antibody-mediated neutralization influence hepatitis C virus reinfection in liver transplantation. J Exp Med207:2019–2031 [CrossRef][PubMed]
    [Google Scholar]
  16. Flint M., Logvinoff C., Rice C. M., McKeating J. A.. 2004; Characterization of infectious retroviral pseudotype particles bearing hepatitis C virus glycoproteins. J Virol78:6875–6882 [CrossRef][PubMed]
    [Google Scholar]
  17. Giang E., Dorner M., Prentoe J. C., Dreux M., Evans M. J., Bukh J., Rice C. M., Ploss A., Burton D. R., Law M.. 2012; Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus. Proc Natl Acad Sci U S A109:6205–6210 [CrossRef][PubMed]
    [Google Scholar]
  18. Goffard A., Callens N., Bartosch B., Wychowski C., Cosset F. L., Montpellier C., Dubuisson J.. 2005; Role of N-linked glycans in the functions of hepatitis C virus envelope glycoproteins. J Virol79:8400–8409 [CrossRef][PubMed]
    [Google Scholar]
  19. Gottwein J. M., Scheel T. K., Jensen T. B., Lademann J. B., Prentoe J. C., Knudsen M. L., Hoegh A. M., Bukh J.. 2009; Development and characterization of hepatitis C virus genotype 1-7 cell culture systems: role of CD81 and scavenger receptor class B type I and effect of antiviral drugs. Hepatology49:364–377 [CrossRef][PubMed]
    [Google Scholar]
  20. Helle F., Vieyres G., Elkrief L., Popescu C., Wychowski C., Descamps V., Castelain S., Roingeard P., Duverlie G., Dubuisson J.. 2010; Role of N-linked glycans in the functions of hepatitis C virus envelope proteins incorporated into infectious virions. J Virol84:11905–11915 [CrossRef][PubMed]
    [Google Scholar]
  21. Hsu M., Zhang J., Flint M., Logvinoff C., Cheng-Mayer C., Rice C. M., McKeating J. A.. 2003; Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci U S A100:7271–7276 [CrossRef]
    [Google Scholar]
  22. Keck Z. Y., Li S. H., Xia J., von Hahn T., Balfe P., McKeating J. A., Witteveldt J., Patel A. H., Alter H. et al. 2009; Mutations in hepatitis C virus E2 located outside the CD81 binding sites lead to escape from broadly neutralizing antibodies but compromise virus infectivity. J Virol83:6149–6160 [CrossRef][PubMed]
    [Google Scholar]
  23. Keck Z. Y., Xia J., Wang Y., Wang W., Krey T., Prentoe J., Carlsen T., Li A. Y., Patel A. H. et al. 2012; Human monoclonal antibodies to a novel cluster of conformational epitopes on HCV E2 with resistance to neutralization escape in a genotype 2a isolate. PLoS Pathog8:e1002653 [CrossRef][PubMed]
    [Google Scholar]
  24. King B., Temperton N. J., Grehan K., Scott S. D., Wright E., Tarr A. W., Daly J. M.. 2016; Technical considerations for the generation of novel pseudotyped viruses. Future Virology11:47–59 [CrossRef]
    [Google Scholar]
  25. Kobinger G. P., Weiner D. J., Yu Q. C., Wilson J. M.. 2001; Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo. Nat Biotechnol19:225–230 [CrossRef][PubMed]
    [Google Scholar]
  26. Lavillette D., Tarr A. W., Voisset C., Donot P., Bartosch B., Bain C., Patel A. H., Dubuisson J., Ball J. K., Cosset F. L.. 2005; Characterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus. Hepatology41:265–274 [CrossRef][PubMed]
    [Google Scholar]
  27. Leung K., Kim J. O., Ganesh L., Kabat J., Schwartz O., Nabel G. J.. 2008; HIV-1 assembly: viral glycoproteins segregate quantally to lipid rafts that associate individually with HIV-1 capsids and virions. Cell Host Microbe3:285–292 [CrossRef][PubMed]
    [Google Scholar]
  28. Li M., Gao F., Mascola J. R., Stamatatos L., Polonis V. R., Koutsoukos M., Voss G., Goepfert P., Gilbert P. et al. 2005; Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J Virol79:10108–10125 [CrossRef][PubMed]
    [Google Scholar]
  29. Lindenbach B. D., Evans M. J., Syder A. J., Wölk B., Tellinghuisen T. L., Liu C. C., Maruyama T., Hynes R. O., Burton D. R. et al. 2005; Complete replication of hepatitis C virus in cell culture. Science309:623–626 [CrossRef][PubMed]
    [Google Scholar]
  30. McClure C. P., Urbanowicz R. A., King B., Cano-Crespo S., Tarr A. W., Ball J. K.. 2016; Flexible and rapid construction of viral chimeras applied to hepatitis C virus. J Gen Virol [CrossRef][PubMed]
    [Google Scholar]
  31. McKeating J. A., Zhang L. Q., Logvinoff C., Flint M., Zhang J., Yu J., Butera D., Ho D. D., Dustin L. B. et al. 2004; Diverse hepatitis C virus glycoproteins mediate viral infection in a CD81-dependent manner. J Virol78:8496–8505 [CrossRef][PubMed]
    [Google Scholar]
  32. Mohan G. S., Ye L., Li W., Monteiro A., Lin X., Sapkota B., Pollack B. P., Compans R. W., Yang C.. 2015; Less is more: Ebola virus surface glycoprotein expression levels regulate virus production and infectivity. J Virol89:1205–1217 [CrossRef][PubMed]
    [Google Scholar]
  33. Nasu A., Marusawa H., Ueda Y., Nishijima N., Takahashi K., Osaki Y., Yamashita Y., Inokuma T., Tamada T. et al. 2011; Genetic heterogeneity of hepatitis C virus in association with antiviral therapy determined by ultra-deep sequencing. PLoS One6:e24907 [CrossRef][PubMed]
    [Google Scholar]
  34. Osburn W. O., Snider A. E., Wells B. L., Latanich R., Bailey J. R., Thomas D. L., Cox A. L., Ray S. C.. 2014; Clearance of hepatitis C infection is associated with the early appearance of broad neutralizing antibody responses. Hepatology59:2140–2151 [CrossRef][PubMed]
    [Google Scholar]
  35. Owsianka A., Clayton R. F., Loomis-Price L. D., McKeating J. A., Patel A. H.. 2001; Functional analysis of hepatitis C virus E2 glycoproteins and virus-like particles reveals structural dissimilarities between different forms of E2. J Gen Virol82:1877–1883 [CrossRef][PubMed]
    [Google Scholar]
  36. Owsianka A., Tarr A. W., Juttla V. S., Lavillette D., Bartosch B., Cosset F. L., Ball J. K., Patel A. H.. 2005; Monoclonal antibody AP33 defines a broadly neutralizing epitope on the hepatitis C virus E2 envelope glycoprotein. J Virol79:11095–11104 [CrossRef][PubMed]
    [Google Scholar]
  37. Owsianka A. M., Timms J. M., Tarr A. W., Brown R. J., Hickling T. P., Szwejk A., Bienkowska-Szewczyk K., Thomson B. J., Patel A. H., Ball J. K.. 2006; Identification of conserved residues in the E2 envelope glycoprotein of the hepatitis C virus that are critical for CD81 binding. J Virol80:8695–8704 [CrossRef][PubMed]
    [Google Scholar]
  38. Pedersen J., Carlsen T. H., Prentoe J., Ramirez S., Jensen T. B., Forns X., Alter H., Foung S. K., Law M. et al. 2013; Neutralization resistance of hepatitis C virus can be overcome by recombinant human monoclonal antibodies. Hepatology58:1587–1597 [CrossRef][PubMed]
    [Google Scholar]
  39. Reyes-del Valle J., de la Fuente C., Turner M. A., Springfeld C., Apte-Sengupta S., Frenzke M. E., Forest A., Whidby J., Marcotrigiano J. et al. 2012; Broadly neutralizing immune responses against hepatitis C virus induced by vectored measles viruses and a recombinant envelope protein booster. J Virol86:11558–11566 [CrossRef][PubMed]
    [Google Scholar]
  40. Russell R. S., Kawaguchi K., Meunier J. C., Takikawa S., Faulk K., Bukh J., Purcell R. H., Emerson S. U.. 2009; Mutational analysis of the hepatitis C virus E1 glycoprotein in retroviral pseudoparticles and cell-culture-derived H77/JFH1 chimeric infectious virus particles. J Viral Hepat16:621–632 [CrossRef][PubMed]
    [Google Scholar]
  41. Sandrin V., Muriaux D., Darlix J. L., Cosset F. L.. 2004; Intracellular trafficking of Gag and Env proteins and their interactions modulate pseudotyping of retroviruses. J Virol78:7153–7164 [CrossRef][PubMed]
    [Google Scholar]
  42. Sandrin V., Cosset F. L.. 2006; Intracellular versus cell surface assembly of retroviral pseudotypes is determined by the cellular localization of the viral glycoprotein, its capacity to interact with Gag, and the expression of the Nef protein. J Biol Chem281:528–542 [CrossRef][PubMed]
    [Google Scholar]
  43. Shukla P., Faulk K. N., Emerson S. U.. 2010; The entire core protein of HCV JFH1 is required for efficient formation of infectious JFH1 pseudoparticles. J Med Virol82:783–790 [CrossRef][PubMed]
    [Google Scholar]
  44. Sullivan N. J., Peterson M., Yang Z. Y., Kong W. P., Duckers H., Nabel E., Nabel G. J.. 2005; Ebola virus glycoprotein toxicity is mediated by a dynamin-dependent protein-trafficking pathway. J Virol79:547–553 [CrossRef][PubMed]
    [Google Scholar]
  45. Tarr A. W., Owsianka A. M., Szwejk A., Ball J. K., Patel A. H.. 2007; Cloning, expression, and functional analysis of patient-derived hepatitis C virus glycoproteins. Methods Mol Biol379:177–197 [CrossRef][PubMed]
    [Google Scholar]
  46. Tarr A. W., Khera T., Hueging K., Sheldon J., Steinmann E., Pietschmann T., Brown R. J.. 2015; Genetic diversity underlying the envelope glycoproteins of hepatitis C virus: structural and functional consequences and the implications for vaccine design. Viruses7:3995–4046 [CrossRef][PubMed]
    [Google Scholar]
  47. Temperton N. J., Hoschler K., Major D., Nicolson C., Manvell R., Hien V. M., Ha D. Q., de Jong M., Zambon M. et al. 2007; A sensitive retroviral pseudotype assay for influenza H5N1-neutralizing antibodies. Influenza Other Respir Viruses1:105–112 [CrossRef]
    [Google Scholar]
  48. Urbanowicz R. A., McClure C. P., Brown R. J., Tsoleridis T., Persson M. A., Krey T., Irving W. L., Ball J. K., Tarr A. W.. 2015; A diverse panel of hepatitis C virus glycoproteins for use in vaccine research reveals extremes of monoclonal antibody neutralization resistance. J Virol90:3288–3301 [CrossRef][PubMed]
    [Google Scholar]
  49. Vela E. M., Zhang L., Colpitts T. M., Davey R. A., Aronson J. F.. 2007; Arenavirus entry occurs through a cholesterol-dependent, non-caveolar, clathrin-mediated endocytic mechanism. Virology369:1–11 [CrossRef][PubMed]
    [Google Scholar]
  50. Wool-Lewis R. J., Bates P.. 1998; Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J Virol72:3155–3160[PubMed]
    [Google Scholar]
  51. Wright E., McNabb S., Goddard T., Horton D. L., Lembo T., Nel L. H., Weiss R. A., Cleaveland S., Fooks A. R.. 2009; A robust lentiviral pseudotype neutralisation assay for in-field serosurveillance of rabies and lyssaviruses in Africa. Vaccine27:7178–7186 [CrossRef][PubMed]
    [Google Scholar]
  52. Yang Z. Y., Duckers H. J., Sullivan N. J., Sanchez A., Nabel E. G., Nabel G. J.. 2000; Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nat Med6:886–889 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000537
Loading
/content/journal/jgv/10.1099/jgv.0.000537
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error