Filamentous influenza viruses Free

Abstract

Clinical isolates of influenza virus produce pleomorphic virus particles, including extremely long filamentous virions. In contrast, strains of influenza that have adapted to laboratory growth typically produce only spherical virions. As a result, the filamentous phenotype has been overlooked in most influenza virus research. Recent advances in imaging and improved animal models have highlighted the distinct structure and functional relevance of filamentous virions. In this review we summarize what is currently known about these strikingly elongated virus particles and discuss their possible roles in clinical infections.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000535
2016-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/8/1755.html?itemId=/content/journal/jgv/10.1099/jgv.0.000535&mimeType=html&fmt=ahah

References

  1. Ada G. L., Perry B. T., Edney M. 1957; Infectivity of influenza virus filaments. Nature 180:1134 [View Article][PubMed]
    [Google Scholar]
  2. Ada G. L., Perry B. T. 1958; Properties of the nucleic acid of the Ryan strain of filamentous influenza virus. J Gen Microbiol 19:40–54 [View Article][PubMed]
    [Google Scholar]
  3. Ada G. L., Perry B. T., Abbot A. 1958; Biological and physical properties of the Ryan strain of filamentous influenza virus. J Gen Microbiol 19:23–39 [View Article][PubMed]
    [Google Scholar]
  4. Al-Mubarak F., Daly J., Christie D., Fountain D., Dunham S. P. 2015; Identification of morphological differences between avian influenza A viruses grown in chicken and duck cells. Virus Res 199:9–19 [View Article][PubMed]
    [Google Scholar]
  5. Almeida J. D., Waterson A. P. 1967a; A morphological comparison of Bittner and influenza viruses. J Hyg 65:467–474 [View Article][PubMed]
    [Google Scholar]
  6. Almeida J. D., Waterson A. P. 1967b; Some observations on the envelope of an influenza virus. J Gen Microbiol 46:107–110 [View Article]
    [Google Scholar]
  7. Archetti I. 1955; Appearances associated with filamentous forms of influenza viruses. Arch Virol 6:29–35 [View Article]
    [Google Scholar]
  8. Basu A., Chadha M., Potdar V., Ganti K., Gangodkar S. 2012; Electron tomography imaging of the pandemic H1N1 2009 influenza virus. J Adv Microsc Res 7:7–13 [View Article]
    [Google Scholar]
  9. Beale R., Wise H., Stuart A., Ravenhill B. J., Digard P., Randow F. 2014; A LC3-interacting motif in the influenza A virus M2 protein is required to subvert autophagy and maintain virion stability. Cell Host Microbe 15:239–247 [View Article][PubMed]
    [Google Scholar]
  10. Beniac D. R., Melito P. L., Devarennes S. L., Hiebert S. L., Rabb M. J., Lamboo L. L., Jones S. M., Booth T. F. 2012; The organisation of Ebola virus reveals a capacity for extensive, modular polyploidy. PLoS One 7:e29608 [View Article][PubMed]
    [Google Scholar]
  11. Bialas K. M., Desmet E. A., Takimoto T. 2012; Specific residues in the 2009 H1N1 swine-origin influenza matrix protein influence virion morphology and efficiency of viral spread in vitro . PLoS One 7:e50595 [View Article][PubMed]
    [Google Scholar]
  12. Bialas K. M., Bussey K. A., Stone R. L., Takimoto T. 2014; Specific nucleoprotein residues affect influenza virus morphology. J Virol 88:2227–2234 [View Article][PubMed]
    [Google Scholar]
  13. Bourmakina S. V., García-Sastre A. 2003; Reverse genetics studies on the filamentous morphology of influenza A virus. J Gen Virol 84:517–527 [View Article][PubMed]
    [Google Scholar]
  14. Brooke C. B., Ince W. L., Wrammert J., Ahmed R., Wilson P. C., Bennink J. R., Yewdell J. W. 2013; Most influenza a virions fail to express at least one essential viral protein. J Virol 87:3155–3162 [View Article][PubMed]
    [Google Scholar]
  15. Brooke C. B., Ince W. L., Wei J., Bennink J. R., Yewdell J. W. 2014; Influenza A virus nucleoprotein selectively decreases neuraminidase gene-segment packaging while enhancing viral fitness and transmissibility. Proc Natl Acad Sci U S A 111:16854–16859 [View Article][PubMed]
    [Google Scholar]
  16. Bruce E. A., Digard P., Stuart A. D. 2010; The Rab11 pathway is required for influenza A virus budding and filament formation. J Virol 84:5848–5859 [View Article][PubMed]
    [Google Scholar]
  17. Burleigh L. M., Calder L. J., Skehel J. J., Steinhauer D. A. 2005; Influenza a viruses with mutations in the m1 helix six domain display a wide variety of morphological phenotypes. J Virol 79:1262–1270 [View Article][PubMed]
    [Google Scholar]
  18. Burnet F. M., Lind P. E. 1957; Studies on filamentary forms of influenza virus with special reference to the use of dark-ground-microscopy. Arch Gesamte Virusforsch 7:413–428 [View Article][PubMed]
    [Google Scholar]
  19. Button B., Cai L. H., Ehre C., Kesimer M., Hill D. B., Sheehan J. K., Boucher R. C., Rubinstein M. 2012; A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 337:937–941 [View Article][PubMed]
    [Google Scholar]
  20. Calder L. J., Wasilewski S., Berriman J. A., Rosenthal P. B. 2010; Structural organization of a filamentous influenza A virus. Proc Natl Acad Sci U S A 107:10685–10690 [View Article][PubMed]
    [Google Scholar]
  21. Campbell P. J., Danzy S., Kyriakis C. S., Deymier M. J., Lowen A. C., Steel J. 2014a; The M segment of the 2009 pandemic influenza virus confers increased neuraminidase activity, filamentous morphology, and efficient contact transmissibility to A/Puerto Rico/8/1934-based Reassortant viruses. Journal of Virology 88:3802–3814 [View Article]
    [Google Scholar]
  22. Campbell P. J., Kyriakis C. S., Marshall N., Suppiah S., Seladi-Schulman J., Danzy S., Lowen A. C., Steel J. 2014b; Residue 41 of the Eurasian avian-like Swine Influenza A virus matrix protein modulates virion filament length and efficiency of contact transmission. Journal of Virology 88:7569–7577 [View Article]
    [Google Scholar]
  23. Chen B. J., Leser G. P., Morita E., Lamb R. A. 2007; Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles. J Virol 81:7111–7123 [View Article][PubMed]
    [Google Scholar]
  24. Chen B. J., Leser G. P., Jackson D., Lamb R. A. 2008; The influenza virus M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly at the site of virus budding. J Virol 82:10059–10070 [View Article][PubMed]
    [Google Scholar]
  25. Chlanda P., Schraidt O., Kummer S., Riches J., Oberwinkler H., Prinz S., Kräusslich H. G., Briggs J. A. 2015; Structural analysis of the roles of Influenza A virus membrane-associated proteins in assembly and morphology. J Virol 89:8957–8966 [View Article][PubMed]
    [Google Scholar]
  26. Choppin P. W., Murphy J. S., Tamm I. 1960; Studies of two kinds of virus particles which comprise influenza A2 virus strains. III. Morphological characteristics: independence to morphological and functional traits. J Exp Med 112:945–952 [View Article][PubMed]
    [Google Scholar]
  27. Choppin P. W., Tamm I. 1960; Studies of two kinds of virus particleswhich comprise influenza A2 virus strains. III. Morphological characteristics: independence to morphological and functional traits. J Exp Med 112:895–920 [View Article][PubMed]
    [Google Scholar]
  28. Choppin P. W. 1963; On the emergence of influenza virus filaments from host cells. Virology 21:278–281 [View Article][PubMed]
    [Google Scholar]
  29. Chu C. M., Dawson I. M., Elford W. J. 1949; Filamentous forms associated with newly isolated influenza virus. The Lancet 253:602–603 [View Article]
    [Google Scholar]
  30. Cohen M., Zhang X. Q., Senaati H. P., Chen H. W., Varki N. M., Schooley R. T., Gagneux P. 2013; Influenza A penetrates host mucus by cleaving sialic acids with neuraminidase. Virol J 10:321 [View Article][PubMed]
    [Google Scholar]
  31. Compans R. W., Holmes K. V., Dales S., Choppin P. W. 1966; An electron microscopic study of moderate and virulent virus–cell interactions of the parainfluenza virus SV5. Virology 30:411–426 [View Article][PubMed]
    [Google Scholar]
  32. Cox J. C., Hampson A. W., Hamilton R. C. 1980; An immunofluorescence study of influenza virus filament formation. Arch Virol 63:275–284 [View Article][PubMed]
    [Google Scholar]
  33. Crane M., Hyatt A. 2011; Viruses of fish: an overview of significant pathogens. Viruses 3:2025–2046 [View Article][PubMed]
    [Google Scholar]
  34. Donald H. B., Isaacs A. 1954; Some properties of influenza virus filaments shown by electron microscopic particle counts. J Gen Microbiol 11:325–331 [View Article][PubMed]
    [Google Scholar]
  35. Elleman C. J., Barclay W. S. 2004; The M1 matrix protein controls the filamentous phenotype of influenza A virus. Virology 321:144–153 [View Article][PubMed]
    [Google Scholar]
  36. Elton D., Bruce E. A., Bryant N., Wise H. M., MacRae S., Rash A., Smith N., Turnbull M. L., Medcalf L. et al. 2013; The genetics of virus particle shape in equine influenza A virus. Influenza Other Respir Viruses 7:81–89 [View Article]
    [Google Scholar]
  37. Enami M., Enami K. 1996; Influenza virus hemagglutinin and neuraminidase glycoproteins stimulate the membrane association of the matrix protein. J Virol 70:6653–6657[PubMed]
    [Google Scholar]
  38. Fahy J. V., Dickey B. F. 2010; Airway mucus function and dysfunction. N Engl J Med 363:2233–2247 [View Article][PubMed]
    [Google Scholar]
  39. Gavazzi C., Yver M., Isel C., Smyth R. P., Rosa-Calatrava M., Lina B., Moulès V., Marquet R. 2013; A functional sequence-specific interaction between influenza A virus genomic RNA segments. Proc Natl Acad Sci U S A 110:16604–16609 [View Article][PubMed]
    [Google Scholar]
  40. Gould S. J., Lewontin R. C. 1979; The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581–598 [View Article][PubMed]
    [Google Scholar]
  41. Harris A., Forouhar F., Qiu S., Sha B., Luo M. 2001; The crystal structure of the influenza matrix protein M1 at neutral pH: M1-M1 protein interfaces can rotate in the oligomeric structures of M1. Virology 289:34–44 [View Article][PubMed]
    [Google Scholar]
  42. Harris A., Cardone G., Winkler D. C., Heymann J. B., Brecher M., White J. M., Steven A. C. 2006; Influenza virus pleiomorphy characterized by cryoelectron tomography. Proc Natl Acad Sci U S A 103:19123–19127 [View Article][PubMed]
    [Google Scholar]
  43. Hayase Y., Uno F., Nii S. 1995; Ultrahigh-resolution scanning electron microscopy of MDCK cells infected with influenza viruses. J Electron Microsc 44:281–288[PubMed]
    [Google Scholar]
  44. Heldt F. S., Kupke S. Y., Dorl S., Reichl U., Frensing T. 2015; Single-cell analysis and stochastic modelling unveil large cell-to-cell variability in influenza A virus infection. Nat Commun 6:8938 [View Article][PubMed]
    [Google Scholar]
  45. Hutchinson E. C., Curran M. D., Read E. K., Gog J. R., Digard P. 2008; Mutational analysis of cis-acting RNA signals in segment 7 of influenza A virus. J Virol 82:11869–11879 [View Article][PubMed]
    [Google Scholar]
  46. Hutchinson E. C., Fodor E. 2013; Transport of the influenza virus genome from nucleus to nucleus. Viruses 5:2424–2446 [View Article][PubMed]
    [Google Scholar]
  47. Hutchinson E. C., Charles P. D., Hester S. S., Thomas B., Trudgian D., Martínez-Alonso M., Fodor E. 2014; Conserved and host-specific features of influenza virion architecture. Nat Commun 5:4816 [View Article][PubMed]
    [Google Scholar]
  48. Itoh Y., Shinya K., Kiso M., Watanabe T., Sakoda Y., Hatta M., Muramoto Y., Tamura D., Sakai-Tagawa Y. et al. 2009; In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 460:1021–1025 [View Article][PubMed]
    [Google Scholar]
  49. Jin H., Leser G. P., Zhang J., Lamb R. A. 1997; Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO J 16:1236–1247 [View Article][PubMed]
    [Google Scholar]
  50. Kibenge F. S., Gárate O. N., Johnson G., Arriagada R., Kibenge M. J., Wadowska D. 2001; Isolation and identification of infectious salmon anaemia virus (ISAV) from Coho salmon in Chile. Dis Aquat Organ 45:9–18 [View Article][PubMed]
    [Google Scholar]
  51. Kilbourne E. D., Kilbourne E. D. 1960; Genetic studies of influenza viruses. I. Viral morphology and growth capacity as exchangeable genetic traits. Rapid in ovo adaptation of early passage Asian strain isolates by combination with PR8. J Exp Med 111:387–406 [View Article][PubMed]
    [Google Scholar]
  52. Koren C. W. R., Nylund A. 1997; Morphology and morphogenesis of infectious salmon anaemia virus replicating in the endothelium of Atlantic salmon Salmo salar . Dis Aquat Organ 29:99–109 [View Article]
    [Google Scholar]
  53. Kosoy O. I, Lambert A. J., Hawkinson D. J., Pastula D. M., Goldsmith C. S., Hunt D. C., Staples J. E. 2015; Novel thogotovirus associated with febrile illness and death, United States, 2014. Emerg Infect Dis 21:760–764 [CrossRef]
    [Google Scholar]
  54. Lakdawala S. S., Lamirande E. W., Suguitan A. L., Wang W., Santos C. P., Vogel L., Matsuoka Y., Lindsley W. G., Jin H., Subbarao K. 2011; Eurasian-origin gene segments contribute to the transmissibility, aerosol release, and morphology of the 2009 pandemic H1N1 influenza virus. PLoS Pathog 7:e1002443 [View Article][PubMed]
    [Google Scholar]
  55. Lang G., Narayan O., Rouse B. T., Ferguson A. E., Connell M. C. 1968; A new influenza A virus infection in turkeys II. A highly pathogenic variant, a/turkey/ontario 772/66. Can Vet J 9:151–160[PubMed]
    [Google Scholar]
  56. Liljeroos L., Krzyzaniak M. A., Helenius A., Butcher S. J. 2013; Architecture of respiratory syncytial virus revealed by electron cryotomography. Proc Natl Acad Sci U S A 110:11133–11138 [View Article][PubMed]
    [Google Scholar]
  57. Liu T., Muller J., Ye Z. 2002; Association of influenza virus matrix protein with ribonucleoproteins may control viral growth and morphology. Virology 304:89–96 [View Article][PubMed]
    [Google Scholar]
  58. Matrosovich M. N., Matrosovich T. Y., Gray T., Roberts N. A., Klenk H. D. 2004; Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol 78:12665–12667 [View Article][PubMed]
    [Google Scholar]
  59. Mitnaul L. J., Castrucci M. R., Murti K. G., Kawaoka Y. 1996; The cytoplasmic tail of influenza A virus neuraminidase (NA) affects NA incorporation into virions, virion morphology, and virulence in mice but is not essential for virus replication. J Virol 70:873–879[PubMed]
    [Google Scholar]
  60. Morgan C., Rose H. M., Moore D. H. 1956; Structure and development of viruses observed in the electron microscope. III. Influenza virus. J Exp Med 104:171–182 [View Article][PubMed]
    [Google Scholar]
  61. Mori K., Haruyama T., Nagata K. 2011; Tamiflu-resistant but HA-mediated cell-to-cell transmission through apical membranes of cell-associated influenza viruses. PLoS One 6:e28178 [View Article][PubMed]
    [Google Scholar]
  62. Mosley V. M., Wyckoff R. W. G. 1946; Electron micrography of the virus of influenza. Nature 157:263 [View Article]
    [Google Scholar]
  63. Muraki Y., Washioka H., Sugawara K., Matsuzaki Y., Takashita E., Hongo S. 2004; Identification of an amino acid residue on influenza C virus M1 protein responsible for formation of the cord-like structures of the virus. J Gen Virol 85:1885–1893 [View Article][PubMed]
    [Google Scholar]
  64. Muraki Y., Murata T., Takashita E., Matsuzaki Y., Sugawara K., Hongo S. 2007; A mutation on influenza C virus M1 protein affects virion morphology by altering the membrane affinity of the protein. J Virol 81:8766–8773 [View Article][PubMed]
    [Google Scholar]
  65. Murti K. G., Webster R. G. 1986; Distribution of hemagglutinin and neuraminidase on influenza virions as revealed by immunoelectron microscopy. Virology 149:36–43 [View Article][PubMed]
    [Google Scholar]
  66. Nakajima N., Hata S., Sato Y., Tobiume M., Katano H., Kaneko K., Nagata N., Kataoka M., Ainai A. et al. 2010; The first autopsy case of pandemic influenza (A/H1N1pdm) virus infection in Japan: detection of a high copy number of the virus in type II alveolar epithelial cells by pathological and virological examination. Jpn J Infect Dis 63:67–71[PubMed]
    [Google Scholar]
  67. Nishimura H., Hara M., Sugawara K., Kitame F., Takiguchi K., Umetsu Y., Tonosaki A., Nakamura K. 1990; Characterization of the cord-like structures emerging from the surface of influenza C virus-infected cells. Virology 179:179–188 [View Article][PubMed]
    [Google Scholar]
  68. Noda T., Sagara H., Yen A., Takada A., Kida H., Cheng R. H., Kawaoka Y. 2006; Architecture of ribonucleoprotein complexes in influenza A virus particles. Nature 439:490–492 [View Article][PubMed]
    [Google Scholar]
  69. Noda T. 2011; Native morphology of influenza virions. Front Microbiol 2:269 [View Article][PubMed]
    [Google Scholar]
  70. Noton S. L., Medcalf E., Fisher D., Mullin A. E., Elton D., Digard P. 2007; Identification of the domains of the influenza A virus M1 matrix protein required for NP binding, oligomerization and incorporation into virions. J Gen Virol 88:2280–2290 [View Article][PubMed]
    [Google Scholar]
  71. Roberts P. C., Lamb R. A., Compans R. W. 1998; The M1 and M2 proteins of influenza A virus are important determinants in filamentous particle formation. Virology 240:127–137 [View Article][PubMed]
    [Google Scholar]
  72. Roberts K. L., Manicassamy B., Lamb R. A. 2015; Influenza A virus uses intercellular connections to spread to neighboring cells. J Virol 89:1537–1549 [View Article][PubMed]
    [Google Scholar]
  73. Rossman J. S., Jing X., Leser G. P., Balannik V., Pinto L. H., Lamb R. A. 2010a; Influenza virus M2 ion channel protein is necessary for filamentous virion formation. J Virol 84:5078–5088 [View Article]
    [Google Scholar]
  74. Rossman J. S., Jing X., Leser G. P., Lamb R. A. 2010b; Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell 142:902–913 [View Article]
    [Google Scholar]
  75. Rossman J. S., Lamb R. A. 2011; Influenza virus assembly and budding. Virology 411:229–236 [View Article][PubMed]
    [Google Scholar]
  76. Rossman J. S., Leser G. P., Lamb R. A. 2012; Filamentous influenza virus enters cells via macropinocytosis. J Virol 86:10950–10960 [View Article][PubMed]
    [Google Scholar]
  77. Ruigrok R. W., Wrigley N. G., Calder L. J., Cusack S., Wharton S. A., Brown E. B., Skehel J. J. 1986; Electron microscopy of the low pH structure of influenza virus haemagglutinin. EMBO J 5:41–49[PubMed]
    [Google Scholar]
  78. Seladi-Schulman J., Steel J., Lowen A. C. 2013; Spherical influenza viruses have a fitness advantage in embryonated eggs, while filament-producing strains are selected in vivo. J Virol 87:13343–13353 [View Article][PubMed]
    [Google Scholar]
  79. Seladi-Schulman J., Campbell P. J., Suppiah S., Steel J., Lowen A. C. 2014; Filament-producing mutants of influenza A/Puerto Rico/8/1934 (H1N1) virus have higher neuraminidase activities than the spherical wild-type. PLoS One 9:e112462 [View Article][PubMed]
    [Google Scholar]
  80. Shaikh F. Y., Utley T. J., Craven R. E., Rogers M. C., Lapierre L. A., Goldenring J. R., Crowe J. E. 2012; Respiratory syncytial virus assembles into structured filamentous virion particles independently of host cytoskeleton and related proteins. PLoS One 7:e40826 [View Article][PubMed]
    [Google Scholar]
  81. Shaw M. L., Stone K. L., Colangelo C. M., Gulcicek E. E., Palese P. 2008; Cellular proteins in influenza virus particles. PLoS Pathog 4:e1000085 [View Article][PubMed]
    [Google Scholar]
  82. Shortridge K. F., Zhou N. N., Guan Y., Gao P., Ito T., Kawaoka Y., Kodihalli S., Krauss S., Markwell D. et al. 1998; Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology 252:331–342 [View Article][PubMed]
    [Google Scholar]
  83. Sieczkarski S. B., Whittaker G. R. 2005; Characterization of the host cell entry of filamentous influenza virus. Arch Virol 150:1783–1796 [View Article][PubMed]
    [Google Scholar]
  84. Simpson-Holley M., Ellis D., Fisher D., Elton D., McCauley J., Digard P. 2002; A functional link between the actin cytoskeleton and lipid rafts during budding of filamentous influenza virions. Virology 301:212–225 [View Article][PubMed]
    [Google Scholar]
  85. Smirnov Yu. A., Kuznetsova M. A., Kaverin N. V. 1991; The genetic aspects of influenza virus filamentous particle formation. Arch Virol 118:279–284[PubMed] [CrossRef]
    [Google Scholar]
  86. Stevenson J. P., Biddle F. 1966; Pleomorphism of influenza virus particles under the electron microscope. Nature 212:619–621 [View Article][PubMed]
    [Google Scholar]
  87. Sugita Y., Noda T., Sagara H., Kawaoka Y. 2011; Ultracentrifugation deforms unfixed influenza A virions. J Gen Virol 92:2485–2493 [View Article][PubMed]
    [Google Scholar]
  88. Valentine R. C., Isaacs A. 1957; The structure of influenza virus filaments and spheres. J Gen Microbiol 16:195–204 [View Article][PubMed]
    [Google Scholar]
  89. Vijayakrishnan S., Loney C., Jackson D., Suphamungmee W., Rixon F. J., Bhella D. 2013; Cryotomography of budding influenza A virus reveals filaments with diverse morphologies that mostly do not bear a genome at their distal end. PLoS Pathog 9:e1003413 [View Article][PubMed]
    [Google Scholar]
  90. Ward A. C. 1995; Specific changes in the M1 protein during adaptation of influenza virus to mouse. Arch Virol 140:383–389 [View Article][PubMed]
    [Google Scholar]
  91. Wasilewski S., Calder L. J., Grant T., Rosenthal P. B. 2012; Distribution of surface glycoproteins on influenza A virus determined by electron cryotomography. Vaccine 30:7368–7373 [View Article][PubMed]
    [Google Scholar]
  92. Wise H. M., Hutchinson E. C., Jagger B. W., Stuart A. D., Kang Z. H., Robb N., Schwartzman L. M., Kash J. C., Fodor E. et al. 2012; Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain. PLoS Pathog 8:e1002998 [View Article][PubMed]
    [Google Scholar]
  93. Wrigley N. G. 1979; Electron microscopy of influenza virus. Br Med Bull 35:35–38[PubMed]
    [Google Scholar]
  94. Yamaguchi M., Danev R., Nishiyama K., Sugawara K., Nagayama K. 2008; Zernike phase contrast electron microscopy of ice-embedded influenza A virus. J Struct Biol 162:271–276 [View Article][PubMed]
    [Google Scholar]
  95. Yang X., Steukers L., Forier K., Xiong R., Braeckmans K., Van Reeth K., Nauwynck H. 2014; A beneficiary role for neuraminidase in influenza virus penetration through the respiratory mucus. PLoS One 9:e110026 [View Article][PubMed]
    [Google Scholar]
  96. Yao Q., Compans R. W. 2000; Filamentous particle formation by human parainfluenza virus type 2. J Gen Virol 81:1305–1312 [View Article][PubMed]
    [Google Scholar]
  97. Zebedee S. L., Lamb R. A. 1989; Growth restriction of influenza A virus by M2 protein antibody is genetically linked to the M1 protein. Proc Natl Acad Sci U S A 86:1061–1065 [View Article][PubMed]
    [Google Scholar]
  98. Zhang J., Pekosz A., Lamb R. A. 2000; Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J Virol 74:4634–4644 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000535
Loading
/content/journal/jgv/10.1099/jgv.0.000535
Loading

Data & Media loading...

Most cited Most Cited RSS feed