1887

Abstract

Clinical isolates of influenza virus produce pleomorphic virus particles, including extremely long filamentous virions. In contrast, strains of influenza that have adapted to laboratory growth typically produce only spherical virions. As a result, the filamentous phenotype has been overlooked in most influenza virus research. Recent advances in imaging and improved animal models have highlighted the distinct structure and functional relevance of filamentous virions. In this review we summarize what is currently known about these strikingly elongated virus particles and discuss their possible roles in clinical infections.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000535
2016-08-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/8/1755.html?itemId=/content/journal/jgv/10.1099/jgv.0.000535&mimeType=html&fmt=ahah

References

  1. Ada G. L., Perry B. T., Edney M.. 1957; Infectivity of influenza virus filaments. Nature180:1134 [CrossRef][PubMed]
    [Google Scholar]
  2. Ada G. L., Perry B. T.. 1958; Properties of the nucleic acid of the Ryan strain of filamentous influenza virus. J Gen Microbiol19:40–54 [CrossRef][PubMed]
    [Google Scholar]
  3. Ada G. L., Perry B. T., Abbot A.. 1958; Biological and physical properties of the Ryan strain of filamentous influenza virus. J Gen Microbiol19:23–39 [CrossRef][PubMed]
    [Google Scholar]
  4. Al-Mubarak F., Daly J., Christie D., Fountain D., Dunham S. P.. 2015; Identification of morphological differences between avian influenza A viruses grown in chicken and duck cells. Virus Res199:9–19 [CrossRef][PubMed]
    [Google Scholar]
  5. Almeida J. D., Waterson A. P.. 1967a; A morphological comparison of Bittner and influenza viruses. J Hyg65:467–474 [CrossRef][PubMed]
    [Google Scholar]
  6. Almeida J. D., Waterson A. P.. 1967b; Some observations on the envelope of an influenza virus. J Gen Microbiol46:107–110 [CrossRef]
    [Google Scholar]
  7. Archetti I.. 1955; Appearances associated with filamentous forms of influenza viruses. Arch Virol6:29–35 [CrossRef]
    [Google Scholar]
  8. Basu A., Chadha M., Potdar V., Ganti K., Gangodkar S.. 2012; Electron tomography imaging of the pandemic H1N1 2009 influenza virus. J Adv Microsc Res7:7–13 [CrossRef]
    [Google Scholar]
  9. Beale R., Wise H., Stuart A., Ravenhill B. J., Digard P., Randow F.. 2014; A LC3-interacting motif in the influenza A virus M2 protein is required to subvert autophagy and maintain virion stability. Cell Host Microbe15:239–247 [CrossRef][PubMed]
    [Google Scholar]
  10. Beniac D. R., Melito P. L., Devarennes S. L., Hiebert S. L., Rabb M. J., Lamboo L. L., Jones S. M., Booth T. F.. 2012; The organisation of Ebola virus reveals a capacity for extensive, modular polyploidy. PLoS One7:e29608 [CrossRef][PubMed]
    [Google Scholar]
  11. Bialas K. M., Desmet E. A., Takimoto T.. 2012; Specific residues in the 2009 H1N1 swine-origin influenza matrix protein influence virion morphology and efficiency of viral spread in vitro . PLoS One7:e50595 [CrossRef][PubMed]
    [Google Scholar]
  12. Bialas K. M., Bussey K. A., Stone R. L., Takimoto T.. 2014; Specific nucleoprotein residues affect influenza virus morphology. J Virol88:2227–2234 [CrossRef][PubMed]
    [Google Scholar]
  13. Bourmakina S. V., García-Sastre A.. 2003; Reverse genetics studies on the filamentous morphology of influenza A virus. J Gen Virol84:517–527 [CrossRef][PubMed]
    [Google Scholar]
  14. Brooke C. B., Ince W. L., Wrammert J., Ahmed R., Wilson P. C., Bennink J. R., Yewdell J. W.. 2013; Most influenza a virions fail to express at least one essential viral protein. J Virol87:3155–3162 [CrossRef][PubMed]
    [Google Scholar]
  15. Brooke C. B., Ince W. L., Wei J., Bennink J. R., Yewdell J. W.. 2014; Influenza A virus nucleoprotein selectively decreases neuraminidase gene-segment packaging while enhancing viral fitness and transmissibility. Proc Natl Acad Sci U S A111:16854–16859 [CrossRef][PubMed]
    [Google Scholar]
  16. Bruce E. A., Digard P., Stuart A. D.. 2010; The Rab11 pathway is required for influenza A virus budding and filament formation. J Virol84:5848–5859 [CrossRef][PubMed]
    [Google Scholar]
  17. Burleigh L. M., Calder L. J., Skehel J. J., Steinhauer D. A.. 2005; Influenza a viruses with mutations in the m1 helix six domain display a wide variety of morphological phenotypes. J Virol79:1262–1270 [CrossRef][PubMed]
    [Google Scholar]
  18. Burnet F. M., Lind P. E.. 1957; Studies on filamentary forms of influenza virus with special reference to the use of dark-ground-microscopy. Arch Gesamte Virusforsch7:413–428 [CrossRef][PubMed]
    [Google Scholar]
  19. Button B., Cai L. H., Ehre C., Kesimer M., Hill D. B., Sheehan J. K., Boucher R. C., Rubinstein M.. 2012; A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science337:937–941 [CrossRef][PubMed]
    [Google Scholar]
  20. Calder L. J., Wasilewski S., Berriman J. A., Rosenthal P. B.. 2010; Structural organization of a filamentous influenza A virus. Proc Natl Acad Sci U S A107:10685–10690 [CrossRef][PubMed]
    [Google Scholar]
  21. Campbell P. J., Danzy S., Kyriakis C. S., Deymier M. J., Lowen A. C., Steel J.. 2014a; The M segment of the 2009 pandemic influenza virus confers increased neuraminidase activity, filamentous morphology, and efficient contact transmissibility to A/Puerto Rico/8/1934-based Reassortant viruses. Journal of Virology88:3802–3814 [CrossRef]
    [Google Scholar]
  22. Campbell P. J., Kyriakis C. S., Marshall N., Suppiah S., Seladi-Schulman J., Danzy S., Lowen A. C., Steel J.. 2014b; Residue 41 of the Eurasian avian-like Swine Influenza A virus matrix protein modulates virion filament length and efficiency of contact transmission. Journal of Virology88:7569–7577 [CrossRef]
    [Google Scholar]
  23. Chen B. J., Leser G. P., Morita E., Lamb R. A.. 2007; Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles. J Virol81:7111–7123 [CrossRef][PubMed]
    [Google Scholar]
  24. Chen B. J., Leser G. P., Jackson D., Lamb R. A.. 2008; The influenza virus M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly at the site of virus budding. J Virol82:10059–10070 [CrossRef][PubMed]
    [Google Scholar]
  25. Chlanda P., Schraidt O., Kummer S., Riches J., Oberwinkler H., Prinz S., Kräusslich H. G., Briggs J. A.. 2015; Structural analysis of the roles of Influenza A virus membrane-associated proteins in assembly and morphology. J Virol89:8957–8966 [CrossRef][PubMed]
    [Google Scholar]
  26. Choppin P. W., Murphy J. S., Tamm I.. 1960; Studies of two kinds of virus particles which comprise influenza A2 virus strains. III. Morphological characteristics: independence to morphological and functional traits. J Exp Med112:945–952 [CrossRef][PubMed]
    [Google Scholar]
  27. Choppin P. W., Tamm I.. 1960; Studies of two kinds of virus particleswhich comprise influenza A2 virus strains. III. Morphological characteristics: independence to morphological and functional traits. J Exp Med112:895–920 [CrossRef][PubMed]
    [Google Scholar]
  28. Choppin P. W.. 1963; On the emergence of influenza virus filaments from host cells. Virology21:278–281 [CrossRef][PubMed]
    [Google Scholar]
  29. Chu C. M., Dawson I. M., Elford W. J.. 1949; Filamentous forms associated with newly isolated influenza virus. The Lancet253:602–603 [CrossRef]
    [Google Scholar]
  30. Cohen M., Zhang X. Q., Senaati H. P., Chen H. W., Varki N. M., Schooley R. T., Gagneux P.. 2013; Influenza A penetrates host mucus by cleaving sialic acids with neuraminidase. Virol J10:321 [CrossRef][PubMed]
    [Google Scholar]
  31. Compans R. W., Holmes K. V., Dales S., Choppin P. W.. 1966; An electron microscopic study of moderate and virulent virus–cell interactions of the parainfluenza virus SV5. Virology30:411–426 [CrossRef][PubMed]
    [Google Scholar]
  32. Cox J. C., Hampson A. W., Hamilton R. C.. 1980; An immunofluorescence study of influenza virus filament formation. Arch Virol63:275–284 [CrossRef][PubMed]
    [Google Scholar]
  33. Crane M., Hyatt A.. 2011; Viruses of fish: an overview of significant pathogens. Viruses3:2025–2046 [CrossRef][PubMed]
    [Google Scholar]
  34. Donald H. B., Isaacs A.. 1954; Some properties of influenza virus filaments shown by electron microscopic particle counts. J Gen Microbiol11:325–331 [CrossRef][PubMed]
    [Google Scholar]
  35. Elleman C. J., Barclay W. S.. 2004; The M1 matrix protein controls the filamentous phenotype of influenza A virus. Virology321:144–153 [CrossRef][PubMed]
    [Google Scholar]
  36. Elton D., Bruce E. A., Bryant N., Wise H. M., MacRae S., Rash A., Smith N., Turnbull M. L., Medcalf L. et al. 2013; The genetics of virus particle shape in equine influenza A virus. Influenza Other Respir Viruses7:81–89 [CrossRef]
    [Google Scholar]
  37. Enami M., Enami K.. 1996; Influenza virus hemagglutinin and neuraminidase glycoproteins stimulate the membrane association of the matrix protein. J Virol70:6653–6657[PubMed]
    [Google Scholar]
  38. Fahy J. V., Dickey B. F.. 2010; Airway mucus function and dysfunction. N Engl J Med363:2233–2247 [CrossRef][PubMed]
    [Google Scholar]
  39. Gavazzi C., Yver M., Isel C., Smyth R. P., Rosa-Calatrava M., Lina B., Moulès V., Marquet R.. 2013; A functional sequence-specific interaction between influenza A virus genomic RNA segments. Proc Natl Acad Sci U S A110:16604–16609 [CrossRef][PubMed]
    [Google Scholar]
  40. Gould S. J., Lewontin R. C.. 1979; The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci205:581–598 [CrossRef][PubMed]
    [Google Scholar]
  41. Harris A., Forouhar F., Qiu S., Sha B., Luo M.. 2001; The crystal structure of the influenza matrix protein M1 at neutral pH: M1-M1 protein interfaces can rotate in the oligomeric structures of M1. Virology289:34–44 [CrossRef][PubMed]
    [Google Scholar]
  42. Harris A., Cardone G., Winkler D. C., Heymann J. B., Brecher M., White J. M., Steven A. C.. 2006; Influenza virus pleiomorphy characterized by cryoelectron tomography. Proc Natl Acad Sci U S A103:19123–19127 [CrossRef][PubMed]
    [Google Scholar]
  43. Hayase Y., Uno F., Nii S.. 1995; Ultrahigh-resolution scanning electron microscopy of MDCK cells infected with influenza viruses. J Electron Microsc44:281–288[PubMed]
    [Google Scholar]
  44. Heldt F. S., Kupke S. Y., Dorl S., Reichl U., Frensing T.. 2015; Single-cell analysis and stochastic modelling unveil large cell-to-cell variability in influenza A virus infection. Nat Commun6:8938 [CrossRef][PubMed]
    [Google Scholar]
  45. Hutchinson E. C., Curran M. D., Read E. K., Gog J. R., Digard P.. 2008; Mutational analysis of cis-acting RNA signals in segment 7 of influenza A virus. J Virol82:11869–11879 [CrossRef][PubMed]
    [Google Scholar]
  46. Hutchinson E. C., Fodor E.. 2013; Transport of the influenza virus genome from nucleus to nucleus. Viruses5:2424–2446 [CrossRef][PubMed]
    [Google Scholar]
  47. Hutchinson E. C., Charles P. D., Hester S. S., Thomas B., Trudgian D., Martínez-Alonso M., Fodor E.. 2014; Conserved and host-specific features of influenza virion architecture. Nat Commun5:4816 [CrossRef][PubMed]
    [Google Scholar]
  48. Itoh Y., Shinya K., Kiso M., Watanabe T., Sakoda Y., Hatta M., Muramoto Y., Tamura D., Sakai-Tagawa Y. et al. 2009; In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature460:1021–1025 [CrossRef][PubMed]
    [Google Scholar]
  49. Jin H., Leser G. P., Zhang J., Lamb R. A.. 1997; Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO J16:1236–1247 [CrossRef][PubMed]
    [Google Scholar]
  50. Kibenge F. S., Gárate O. N., Johnson G., Arriagada R., Kibenge M. J., Wadowska D.. 2001; Isolation and identification of infectious salmon anaemia virus (ISAV) from Coho salmon in Chile. Dis Aquat Organ45:9–18 [CrossRef][PubMed]
    [Google Scholar]
  51. Kilbourne E. D., Kilbourne E. D.. 1960; Genetic studies of influenza viruses. I. Viral morphology and growth capacity as exchangeable genetic traits. Rapid in ovo adaptation of early passage Asian strain isolates by combination with PR8. J Exp Med111:387–406 [CrossRef][PubMed]
    [Google Scholar]
  52. Koren C. W. R., Nylund A.. 1997; Morphology and morphogenesis of infectious salmon anaemia virus replicating in the endothelium of Atlantic salmon Salmo salar . Dis Aquat Organ29:99–109 [CrossRef]
    [Google Scholar]
  53. Kosoy O. I, Lambert A. J., Hawkinson D. J., Pastula D. M., Goldsmith C. S., Hunt D. C., Staples J. E.. 2015; Novel thogotovirus associated with febrile illness and death, United States, 2014. Emerg Infect Dis21:760–764[CrossRef]
    [Google Scholar]
  54. Lakdawala S. S., Lamirande E. W., Suguitan A. L., Wang W., Santos C. P., Vogel L., Matsuoka Y., Lindsley W. G., Jin H., Subbarao K.. 2011; Eurasian-origin gene segments contribute to the transmissibility, aerosol release, and morphology of the 2009 pandemic H1N1 influenza virus. PLoS Pathog7:e1002443 [CrossRef][PubMed]
    [Google Scholar]
  55. Lang G., Narayan O., Rouse B. T., Ferguson A. E., Connell M. C.. 1968; A new influenza A virus infection in turkeys II. A highly pathogenic variant, a/turkey/ontario 772/66. Can Vet J9:151–160[PubMed]
    [Google Scholar]
  56. Liljeroos L., Krzyzaniak M. A., Helenius A., Butcher S. J.. 2013; Architecture of respiratory syncytial virus revealed by electron cryotomography. Proc Natl Acad Sci U S A110:11133–11138 [CrossRef][PubMed]
    [Google Scholar]
  57. Liu T., Muller J., Ye Z.. 2002; Association of influenza virus matrix protein with ribonucleoproteins may control viral growth and morphology. Virology304:89–96 [CrossRef][PubMed]
    [Google Scholar]
  58. Matrosovich M. N., Matrosovich T. Y., Gray T., Roberts N. A., Klenk H. D.. 2004; Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol78:12665–12667 [CrossRef][PubMed]
    [Google Scholar]
  59. Mitnaul L. J., Castrucci M. R., Murti K. G., Kawaoka Y.. 1996; The cytoplasmic tail of influenza A virus neuraminidase (NA) affects NA incorporation into virions, virion morphology, and virulence in mice but is not essential for virus replication. J Virol70:873–879[PubMed]
    [Google Scholar]
  60. Morgan C., Rose H. M., Moore D. H.. 1956; Structure and development of viruses observed in the electron microscope. III. Influenza virus. J Exp Med104:171–182 [CrossRef][PubMed]
    [Google Scholar]
  61. Mori K., Haruyama T., Nagata K.. 2011; Tamiflu-resistant but HA-mediated cell-to-cell transmission through apical membranes of cell-associated influenza viruses. PLoS One6:e28178 [CrossRef][PubMed]
    [Google Scholar]
  62. Mosley V. M., Wyckoff R. W. G.. 1946; Electron micrography of the virus of influenza. Nature157:263 [CrossRef]
    [Google Scholar]
  63. Muraki Y., Washioka H., Sugawara K., Matsuzaki Y., Takashita E., Hongo S.. 2004; Identification of an amino acid residue on influenza C virus M1 protein responsible for formation of the cord-like structures of the virus. J Gen Virol85:1885–1893 [CrossRef][PubMed]
    [Google Scholar]
  64. Muraki Y., Murata T., Takashita E., Matsuzaki Y., Sugawara K., Hongo S.. 2007; A mutation on influenza C virus M1 protein affects virion morphology by altering the membrane affinity of the protein. J Virol81:8766–8773 [CrossRef][PubMed]
    [Google Scholar]
  65. Murti K. G., Webster R. G.. 1986; Distribution of hemagglutinin and neuraminidase on influenza virions as revealed by immunoelectron microscopy. Virology149:36–43 [CrossRef][PubMed]
    [Google Scholar]
  66. Nakajima N., Hata S., Sato Y., Tobiume M., Katano H., Kaneko K., Nagata N., Kataoka M., Ainai A. et al. 2010; The first autopsy case of pandemic influenza (A/H1N1pdm) virus infection in Japan: detection of a high copy number of the virus in type II alveolar epithelial cells by pathological and virological examination. Jpn J Infect Dis63:67–71[PubMed]
    [Google Scholar]
  67. Nishimura H., Hara M., Sugawara K., Kitame F., Takiguchi K., Umetsu Y., Tonosaki A., Nakamura K.. 1990; Characterization of the cord-like structures emerging from the surface of influenza C virus-infected cells. Virology179:179–188 [CrossRef][PubMed]
    [Google Scholar]
  68. Noda T., Sagara H., Yen A., Takada A., Kida H., Cheng R. H., Kawaoka Y.. 2006; Architecture of ribonucleoprotein complexes in influenza A virus particles. Nature439:490–492 [CrossRef][PubMed]
    [Google Scholar]
  69. Noda T.. 2011; Native morphology of influenza virions. Front Microbiol2:269 [CrossRef][PubMed]
    [Google Scholar]
  70. Noton S. L., Medcalf E., Fisher D., Mullin A. E., Elton D., Digard P.. 2007; Identification of the domains of the influenza A virus M1 matrix protein required for NP binding, oligomerization and incorporation into virions. J Gen Virol88:2280–2290 [CrossRef][PubMed]
    [Google Scholar]
  71. Roberts P. C., Lamb R. A., Compans R. W.. 1998; The M1 and M2 proteins of influenza A virus are important determinants in filamentous particle formation. Virology240:127–137 [CrossRef][PubMed]
    [Google Scholar]
  72. Roberts K. L., Manicassamy B., Lamb R. A.. 2015; Influenza A virus uses intercellular connections to spread to neighboring cells. J Virol89:1537–1549 [CrossRef][PubMed]
    [Google Scholar]
  73. Rossman J. S., Jing X., Leser G. P., Balannik V., Pinto L. H., Lamb R. A.. 2010a; Influenza virus M2 ion channel protein is necessary for filamentous virion formation. J Virol84:5078–5088 [CrossRef]
    [Google Scholar]
  74. Rossman J. S., Jing X., Leser G. P., Lamb R. A.. 2010b; Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell142:902–913 [CrossRef]
    [Google Scholar]
  75. Rossman J. S., Lamb R. A.. 2011; Influenza virus assembly and budding. Virology411:229–236 [CrossRef][PubMed]
    [Google Scholar]
  76. Rossman J. S., Leser G. P., Lamb R. A.. 2012; Filamentous influenza virus enters cells via macropinocytosis. J Virol86:10950–10960 [CrossRef][PubMed]
    [Google Scholar]
  77. Ruigrok R. W., Wrigley N. G., Calder L. J., Cusack S., Wharton S. A., Brown E. B., Skehel J. J.. 1986; Electron microscopy of the low pH structure of influenza virus haemagglutinin. EMBO J5:41–49[PubMed]
    [Google Scholar]
  78. Seladi-Schulman J., Steel J., Lowen A. C.. 2013; Spherical influenza viruses have a fitness advantage in embryonated eggs, while filament-producing strains are selected in vivo. J Virol87:13343–13353 [CrossRef][PubMed]
    [Google Scholar]
  79. Seladi-Schulman J., Campbell P. J., Suppiah S., Steel J., Lowen A. C.. 2014; Filament-producing mutants of influenza A/Puerto Rico/8/1934 (H1N1) virus have higher neuraminidase activities than the spherical wild-type. PLoS One9:e112462 [CrossRef][PubMed]
    [Google Scholar]
  80. Shaikh F. Y., Utley T. J., Craven R. E., Rogers M. C., Lapierre L. A., Goldenring J. R., Crowe J. E.. 2012; Respiratory syncytial virus assembles into structured filamentous virion particles independently of host cytoskeleton and related proteins. PLoS One7:e40826 [CrossRef][PubMed]
    [Google Scholar]
  81. Shaw M. L., Stone K. L., Colangelo C. M., Gulcicek E. E., Palese P.. 2008; Cellular proteins in influenza virus particles. PLoS Pathog4:e1000085 [CrossRef][PubMed]
    [Google Scholar]
  82. Shortridge K. F., Zhou N. N., Guan Y., Gao P., Ito T., Kawaoka Y., Kodihalli S., Krauss S., Markwell D. et al. 1998; Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology252:331–342 [CrossRef][PubMed]
    [Google Scholar]
  83. Sieczkarski S. B., Whittaker G. R.. 2005; Characterization of the host cell entry of filamentous influenza virus. Arch Virol150:1783–1796 [CrossRef][PubMed]
    [Google Scholar]
  84. Simpson-Holley M., Ellis D., Fisher D., Elton D., McCauley J., Digard P.. 2002; A functional link between the actin cytoskeleton and lipid rafts during budding of filamentous influenza virions. Virology301:212–225 [CrossRef][PubMed]
    [Google Scholar]
  85. Smirnov Yu. A., Kuznetsova M. A., Kaverin N. V.. 1991; The genetic aspects of influenza virus filamentous particle formation. Arch Virol118:279–284[PubMed][CrossRef]
    [Google Scholar]
  86. Stevenson J. P., Biddle F.. 1966; Pleomorphism of influenza virus particles under the electron microscope. Nature212:619–621 [CrossRef][PubMed]
    [Google Scholar]
  87. Sugita Y., Noda T., Sagara H., Kawaoka Y.. 2011; Ultracentrifugation deforms unfixed influenza A virions. J Gen Virol92:2485–2493 [CrossRef][PubMed]
    [Google Scholar]
  88. Valentine R. C., Isaacs A.. 1957; The structure of influenza virus filaments and spheres. J Gen Microbiol16:195–204 [CrossRef][PubMed]
    [Google Scholar]
  89. Vijayakrishnan S., Loney C., Jackson D., Suphamungmee W., Rixon F. J., Bhella D.. 2013; Cryotomography of budding influenza A virus reveals filaments with diverse morphologies that mostly do not bear a genome at their distal end. PLoS Pathog9:e1003413 [CrossRef][PubMed]
    [Google Scholar]
  90. Ward A. C.. 1995; Specific changes in the M1 protein during adaptation of influenza virus to mouse. Arch Virol140:383–389 [CrossRef][PubMed]
    [Google Scholar]
  91. Wasilewski S., Calder L. J., Grant T., Rosenthal P. B.. 2012; Distribution of surface glycoproteins on influenza A virus determined by electron cryotomography. Vaccine30:7368–7373 [CrossRef][PubMed]
    [Google Scholar]
  92. Wise H. M., Hutchinson E. C., Jagger B. W., Stuart A. D., Kang Z. H., Robb N., Schwartzman L. M., Kash J. C., Fodor E. et al. 2012; Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain. PLoS Pathog8:e1002998 [CrossRef][PubMed]
    [Google Scholar]
  93. Wrigley N. G.. 1979; Electron microscopy of influenza virus. Br Med Bull35:35–38[PubMed]
    [Google Scholar]
  94. Yamaguchi M., Danev R., Nishiyama K., Sugawara K., Nagayama K.. 2008; Zernike phase contrast electron microscopy of ice-embedded influenza A virus. J Struct Biol162:271–276 [CrossRef][PubMed]
    [Google Scholar]
  95. Yang X., Steukers L., Forier K., Xiong R., Braeckmans K., Van Reeth K., Nauwynck H.. 2014; A beneficiary role for neuraminidase in influenza virus penetration through the respiratory mucus. PLoS One9:e110026 [CrossRef][PubMed]
    [Google Scholar]
  96. Yao Q., Compans R. W.. 2000; Filamentous particle formation by human parainfluenza virus type 2. J Gen Virol81:1305–1312 [CrossRef][PubMed]
    [Google Scholar]
  97. Zebedee S. L., Lamb R. A.. 1989; Growth restriction of influenza A virus by M2 protein antibody is genetically linked to the M1 protein. Proc Natl Acad Sci U S A86:1061–1065 [CrossRef][PubMed]
    [Google Scholar]
  98. Zhang J., Pekosz A., Lamb R. A.. 2000; Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J Virol74:4634–4644 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000535
Loading
/content/journal/jgv/10.1099/jgv.0.000535
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error