1887

Abstract

Mosquito-transmitted Sindbis virus (SINV) causes fever, skin lesions and musculoskeletal symptoms if transmitted to man. SINV is the prototype virus of genus , which includes other arthritogenic viruses such as chikungunya virus (CHIKV) and Ross River virus (RRV) that cause large epidemics with a considerable public health burden. Until now the human B-cell epitopes have been studied for CHIKV and RRV, but not for SINV. To identify the B-cell epitopes in SINV–infection, we synthetised a library of linear 18-mer peptides covering the structural polyprotein of SINV, and probed it with SINV IgG-positive and IgG-negative serum pools. By comparing the binding profiles of the pools, we identified 15 peptides that were strongly reactive only with the SINV IgG-positive pools. We then utilized alanine scanning and individual (=22) patient sera to further narrow the number of common B-cell epitopes to six. These epitopes locate to the capsid, E2, E1 and to a region in PE2 (uncleaved E3-E2), which may only be present in immature virions. By sequence comparison, we observed that one of the capsid protein epitopes shares six identical amino acids with macrophage migration inhibitory factor (MIF) receptor, which is linked to inflammatory diseases and to molecular pathology of alphaviral arthritides. Our results add to the current understanding on SINV disease and raise questions of a potential role of uncleaved PE2 and the MIF receptor (CD74) mimotope in human SINV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000531
2016-09-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/9/2243.html?itemId=/content/journal/jgv/10.1099/jgv.0.000531&mimeType=html&fmt=ahah

References

  1. Abdelnabi R., Neyts J., Delang L..( 2015;). Towards antivirals against chikungunya virus. . Antiviral Res 121: 59–68. [CrossRef] [PubMed]
    [Google Scholar]
  2. Adouchief S., Smura T., Sane J., Vapalahti O., Kurkela S..( 2016;). Sindbis virus as a human pathogen—epidemiology, clinical picture and pathogenesis. . Rev Med Virol 26: 221–241. [CrossRef] [PubMed]
    [Google Scholar]
  3. Assunção-Miranda I., Bozza M. T., Da Poian A. T..( 2010;). Pro-inflammatory response resulting from sindbis virus infection of human macrophages: implications for the pathogenesis of viral arthritis. . J Med Virol 82: 164–174. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bacher M., Metz C. N., Calandra T., Mayer K., Chesney J., Lohoff M., Gemsa D., Donnelly T., Bucala R..( 1996;). An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. . Proc Natl Acad Sci U S A 93: 7849–7854. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bernhagen J., Krohn R., Lue H., Gregory J. L., Zernecke A., Koenen R. R., Dewor M., Georgiev I., Schober A. et al.( 2007;). MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. . Nat Med 13: 587–596. [CrossRef] [PubMed]
    [Google Scholar]
  6. Brummer-Korvenkontio M., Vapalahti O., Kuusisto P., Saikku P., Manni T., Koskela P., Nygren T., Brummer-Korvenkontio H., Vaheri A..( 2002;). Epidemiology of Sindbis virus infections in Finland 1981–96: possible factors explaining a peculiar disease pattern. . Epidemiol Infect 129: 335–345. [CrossRef] [PubMed]
    [Google Scholar]
  7. Davis N. L., Pence D. F., Meyer W. J., Schmaljohn A. L., Johnston R. E..( 1987;). Alternative forms of a strain-specific neutralizing antigenic site on the Sindbis virus E2 glycoprotein. . Virology 161: 101–108. [CrossRef] [PubMed]
    [Google Scholar]
  8. de Curtis, Simons K..( 1988;). Dissection of Semliki Forest virus glycoprotein delivery from the trans-Golgi network to the cell surface in permeabilized BHK cells. . Proc Natl Acad Sci U S A 85: 8052–8056. [CrossRef] [PubMed]
    [Google Scholar]
  9. Emini E. A., Hughes J., Perlow D. S., Boger J..( 1985;). Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. . J Virol 55: 836–839.[PubMed]
    [Google Scholar]
  10. Erwin C., Brown D. T..( 1980;). Intracellular distribution of Sindbis virus membrane proteins in BHK-21 cells infected with wild-type virus and maturation-defective mutants. . J Virol 36: 775–786.[PubMed]
    [Google Scholar]
  11. Fischer M., Staples J. E., Branch A. D.. Arboviral Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, CDC( 2014;). Notes from the field: chikungunya virus spreads in the Americas – Caribbean and South America, 2013–2014. . MMWR Morb Mortal Wkly Rep 63: 500–501.[PubMed]
    [Google Scholar]
  12. Fric J., Bertin-Maghit S., Wang C., Nardin A., Warter L..( 2013;). Use of human monoclonal antibodies to treat Chikungunya virus infection. . J Infect Dis 207: 319–322. [CrossRef] [PubMed]
    [Google Scholar]
  13. Goh L. Y., Hobson-Peters J., Prow N. A., Baker K., Piyasena T. B., Taylor C. T., Rana A., Hastie M. L., Gorman J. J., Hall R. A..( 2015;). The chikungunya virus capsid protein contains linear B cell epitopes in the N- and C-terminal regions that are dependent on an intact C-terminus for antibody recognition. . Viruses 7: 2943–2964. [CrossRef] [PubMed]
    [Google Scholar]
  14. Goh L. Y., Hobson-Peters J., Prow N. A., Gardner J., Bielefeldt-Ohmann H., Pyke A. T., Suhrbier A., Hall R. A..( 2013;). Neutralizing monoclonal antibodies to the E2 protein of chikungunya virus protects against disease in a mouse model. . Clin Immunol 149: 487–497. [CrossRef] [PubMed]
    [Google Scholar]
  15. Gore Y., Starlets D., Maharshak N., Becker-Herman S., Kaneyuki U., Leng L., Bucala R., Shachar I..( 2008;). Macrophage migration inhibitory factor induces B cell survival by activation of a CD74-CD44 receptor complex. . J Biol Chem 283: 2784–2792. [CrossRef] [PubMed]
    [Google Scholar]
  16. Griffin D., Levine B., Tyor W., Ubol S., Desprès P..( 1997;). The role of antibody in recovery from alphavirus encephalitis. . Immunol Rev 159: 155–161. [CrossRef] [PubMed]
    [Google Scholar]
  17. Heiskanen T., Lundkvist A., Soliymani R., Koivunen E., Vaheri A., Lankinen H..( 1999;). Phage-displayed peptides mimicking the discontinuous neutralization sites of Puumala hantavirus envelope glycoproteins. . Virology 262: 321–332. [CrossRef] [PubMed]
    [Google Scholar]
  18. Hepojoki J., Strandin T., Vaheri A., Lankinen H..( 2010a;). Interactions and oligomerization of hantavirus glycoproteins. . J Virol 84: 227–242. [CrossRef]
    [Google Scholar]
  19. Hepojoki J., Strandin T., Wang H., Vapalahti O., Vaheri A., Lankinen H..( 2010b;). Cytoplasmic tails of hantavirus glycoproteins interact with the nucleocapsid protein. . J Gen Virol 91: 2341–2350. [CrossRef]
    [Google Scholar]
  20. Herrero L. J., Nelson M., Srikiatkhachorn A., Gu R., Anantapreecha S., Fingerle-Rowson G., Bucala R., Morand E., Santos L. L., Mahalingam S..( 2011;). Critical role for macrophage migration inhibitory factor (MIF) in Ross River virus-induced arthritis and myositis. . Proc Natl Acad Sci U S A 108: 12048–12053. [CrossRef] [PubMed]
    [Google Scholar]
  21. Herrero L. J., Sheng K. C., Jian P., Taylor A., Her Z., Herring B. L., Chow A., Leo Y. S., Hickey M. J. et al.( 2013;). Macrophage migration inhibitory factor receptor CD74 mediates alphavirus-induced arthritis and myositis in murine models of alphavirus infection. . Arthritis Rheum 65: 2724–2736. [CrossRef] [PubMed]
    [Google Scholar]
  22. International Committee on Taxonomy of Viruses( 2014;). NinthReport of the International Committee on Taxonomy of Viruses, Edited by A. M. Q. King, M. J. Adams, E. B. Carstens, E. J. Lefkowitz. London:: Academic Press;.
    [Google Scholar]
  23. Jalava K., Sane J., Ollgren J., Ruuhela R., Rätti O., Kurkela S., Helle P., Hartonen S., Pirinen P. et al.( 2013;). Climatic, ecological and socioeconomic factors as predictors of Sindbis virus infections in Finland. . Epidemiol Infect 141: 1857–1866. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kam Y. W., Lee W. W., Simarmata D., Le Grand R., Tolou H., Merits A., Roques P., Ng L. F..( 2014;). Unique epitopes recognized by antibodies induced in Chikungunya virus-infected non-human primates: implications for the study of immunopathology and vaccine development. . PLoS One 9: e95647. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kam Y. W., Pok K. Y., Eng K. E., Tan L. K., Kaur S., Lee W. W., Leo Y. S., Ng L. C., Ng L. F..( 2015;). Sero-prevalence and cross-reactivity of chikungunya virus specific anti-E2EP3 antibodies in arbovirus-infected patients. . PLoS Negl Trop Dis 9: e3445. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kam Y.-W., Lum F.-M., Teo T.-H., Lee W. W. L., Simarmata D., Harjanto S., Chua C.-L., Chan Y.-F., Wee J.-K. et al.( 2012b;). Early neutralizing IgG response to Chikungunya virus in infected patients targets a dominant linear epitope on the E2 glycoprotein. . EMBO Mol Med 4: 330–343. [CrossRef]
    [Google Scholar]
  27. Kam Y.-W., Simarmata D., Chow A., Her Z., Teng T.-S., Ong E. K. S., Renia L., Leo Y. -S., Ng L. F. P..( 2012a;). Early appearance of neutralizing immunoglobulin g3 antibodies is associated with chikungunya virus clearance and long-term clinical protection. . J Infect Dis. 205: 1147–1154. [CrossRef]
    [Google Scholar]
  28. Karplus P. A., Schulz G. E..( 1985;). Prediction of chain flexibility in proteins. . Naturwissenschaften 72: 212–213. [CrossRef]
    [Google Scholar]
  29. Kerr J. R., Mattey D. L., Thomson W., Poulton K. V., Ollier W. E..( 2002;). Association of symptomatic acute human parvovirus B19 infection with human leukocyte antigen class I and II alleles. . J Infect Dis 186: 447–452. [CrossRef] [PubMed]
    [Google Scholar]
  30. Klimstra W. B., Heidner H. W., Johnston R. E..( 1999;). The furin protease cleavage recognition sequence of Sindbis virus PE2 can mediate virion attachment to cell surface heparan sulfate. . J Virol 73: 6299–6306.[PubMed]
    [Google Scholar]
  31. Klimstra W. B., Ryman K. D., Johnston R. E..( 1998;). Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. . J Virol 72: 7357–7366.[PubMed]
    [Google Scholar]
  32. Kolaskar A. S., Tongaonkar P. C..( 1990;). A semi-empirical method for prediction of antigenic determinants on protein antigens. . FEBS Lett 276: 172–174. [CrossRef] [PubMed]
    [Google Scholar]
  33. Krieger E., Vriend G..( 2014;). YASARA View - molecular graphics for all devices - from smartphones to workstations. . Bioinformatics 30: 2981–2982. [CrossRef] [PubMed]
    [Google Scholar]
  34. Kuivanen S., Hepojoki J., Vene S., Vaheri A., Vapalahti O..( 2014;). Identification of linear human B-cell epitopes of tick-borne encephalitis virus. . Virol J 11: 115. [CrossRef] [PubMed]
    [Google Scholar]
  35. Kurkela S., Helve T., Vaheri A., Vapalahti O..( 2008a;). Arthritis and arthralgia three years after Sindbis virus infection: clinical follow-up of a cohort of 49 patients. . Scand J Infect Dis 40: 167–173. [CrossRef]
    [Google Scholar]
  36. Kurkela S., Manni T., Myllynen J., Vaheri A., Vapalahti O..( 2005;). Clinical and laboratory manifestations of Sindbis virus infection: prospective study, Finland, 2002–2003. . J Infect Dis 191: 1820–1829.[Crossref]
    [Google Scholar]
  37. Kurkela S., Manni T., Vaheri A., Vapalahti O..( 2004;). Causative agent of Pogosta disease isolated from blood and skin lesions. . Emerg Infect Dis 10: 889–894. [CrossRef] [PubMed]
    [Google Scholar]
  38. Kurkela S., Rätti O., Huhtamo E., Uzcátegui N. Y., Nuorti J. P., Laakkonen J., Manni T., Helle P., Vaheri A., Vapalahti O..( 2008b;). Sindbis virus infection in resident birds, migratory birds, and humans, Finland. . Emerg Infect Dis 14: 41–47. [CrossRef]
    [Google Scholar]
  39. Li S., Rissanen I., Zeltina A., Hepojoki J., Raghwani J., Harlos K., Pybus O. G., Huiskonen J. T., Bowden T. A..( 2016;). A molecular-level account of the antigenic hantaviral surface. . Cell Rep 15: 959–967. [CrossRef] [PubMed]
    [Google Scholar]
  40. Li W., Joshi M. D., Singhania S., Ramsey K. H., Murthy A. K..( 2014;). Peptide vaccine: progress and challenges. . Vaccines 2: 515–536. [CrossRef] [PubMed]
    [Google Scholar]
  41. Lundström J. O., Pfeffer M..( 2010;). Phylogeographic structure and evolutionary history of Sindbis virus. . Vector Borne Zoonotic Dis 10: 889–907. [CrossRef] [PubMed]
    [Google Scholar]
  42. Manni T., Kurkela S., Vaheri A., Vapalahti O..( 2008;). Diagnostics of Pogosta disease: antigenic properties and evaluation of Sindbis virus IgM and IgG enzyme immunoassays. . Vector Borne Zoonotic Dis 8: 303–311. [CrossRef] [PubMed]
    [Google Scholar]
  43. Marsh L. M., Cakarova L., Kwapiszewska G., von Wulffen W., Herold S., Seeger W., Lohmeyer J..( 2009;). Surface expression of CD74 by type II alveolar epithelial cells: a potential mechanism for macrophage migration inhibitory factor-induced epithelial repair. . Am J Physiol Lung Cell Mol Physiol 296: L442–L452. [CrossRef] [PubMed]
    [Google Scholar]
  44. Mayne J. T., Bell J. R., Strauss E. G., Strauss J. H..( 1985;). Pattern of glycosylation of Sindbis virus envelope proteins synthesized in hamster and chicken cells. . Virology 142: 121–133. [CrossRef] [PubMed]
    [Google Scholar]
  45. Mendoza Q. P., Stanley J., Griffin D. E..( 1988;). Monoclonal antibodies to the E1 and E2 glycoproteins of Sindbis virus: definition of epitopes and efficiency of protection from fatal encephalitis. . J Gen Virol 69: 3015–3022. [CrossRef] [PubMed]
    [Google Scholar]
  46. Meyer W. J., Johnston R. E..( 1993;). Structural rearrangement of infecting Sindbis virions at the cell surface: mapping of newly accessible epitopes. . J Virol 67: 5117–5125.[PubMed]
    [Google Scholar]
  47. Moldenhauer G., Henne C., Karhausen J., Möller P..( 1999;). Surface-expressed invariant chain (CD74) is required for internalization of human leucocyte antigen-DR molecules to early endosomal compartments. . Immunology 96: 473–484. [CrossRef] [PubMed]
    [Google Scholar]
  48. Morand E. F., Leech M..( 2005;). Macrophage migration inhibitory factor in rheumatoid arthritis. . Front Biosci 10: 12–22. [CrossRef] [PubMed]
    [Google Scholar]
  49. Niklasson B., Espmark A..( 1986;). Ockelbo disease: arthralgia 3–4 years after infection with a Sindbis virus related agent. . Lancet 1: 1039–1040. [CrossRef] [PubMed]
    [Google Scholar]
  50. Niklasson B., Espmark A., Lundström J..( 1988;). Occurrence of arthralgia and specific IgM antibodies three to four years after Ockelbo disease. . J Infect Dis 157: 832–835. [CrossRef] [PubMed]
    [Google Scholar]
  51. Olmsted R. A., Meyer W. J., Johnston R. E..( 1986;). Characterization of Sindbis virus epitopes important for penetration in cell culture and pathogenesis in animals. . Virology 148: 245–254. [CrossRef] [PubMed]
    [Google Scholar]
  52. Pal P., Dowd K. A., Brien J. D., Edeling M. A., Gorlatov S., Johnson S., Lee I., Akahata W., Nabel G. J. et al.( 2013;). Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus. . PLoS Pathog 9: e1003312. [CrossRef] [PubMed]
    [Google Scholar]
  53. Parker J. M., Guo D., Hodges R. S..( 1986;). New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. . Biochemistry 25: 5425–5432. [CrossRef] [PubMed]
    [Google Scholar]
  54. Rice C. M., Strauss J. H..( 1982;). Association of Sindbis virion glycoproteins and their precursors. . J Mol Biol 154: 325–348. [CrossRef] [PubMed]
    [Google Scholar]
  55. Rodenhuis-Zybert I. A., van der Schaar H. M., da Silva Voorham J. M., van der Ende-Metselaar H., Lei H. Y., Wilschut J., Smit J. M..( 2010;). Immature dengue virus: a veiled pathogen?. PLoS Pathog 6: e1000718. [CrossRef] [PubMed]
    [Google Scholar]
  56. Russell D. L., Dalrymple J. M., Johnston R. E..( 1989;). Sindbis virus mutations which coordinately affect glycoprotein processing, penetration, and virulence in mice. . J Virol 63: 1619–1629.[PubMed]
    [Google Scholar]
  57. Ryman K. D., Klimstra W. B., Johnston R. E..( 2004;). Attenuation of Sindbis virus variants incorporating uncleaved PE2 glycoprotein is correlated with attachment to cell-surface heparan sulfate. . Virology 322: 1–12. [CrossRef] [PubMed]
    [Google Scholar]
  58. Saha S., Raghava G. P..( 2006;). Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. . Proteins 65: 40–48. [CrossRef] [PubMed]
    [Google Scholar]
  59. Sane J., Guedes S., Ollgren J., Kurkela S., Klemets P., Vapalahti O., Kela E., Lyytikäinen O., Nuorti J. P..( 2011;). Epidemic sindbis virus infection in Finland: a population-based case-control study of risk factors. . J Infect Dis 204: 459–466. [CrossRef] [PubMed]
    [Google Scholar]
  60. Sane J., Kurkela S., Lokki M. L., Miettinen A., Helve T., Vaheri A., Vapalahti O..( 2012;). Clinical Sindbis alphavirus infection is associated with HLA-DRB1*01 allele and production of autoantibodies. . Clin Infect Dis 55: 358–363. [CrossRef] [PubMed]
    [Google Scholar]
  61. Selvarajah S., Sexton N. R., Kahle K. M., Fong R. H., Mattia K. A., Gardner J., Lu K., Liss N. M., Salvador B. et al.( 2013;). A neutralizing monoclonal antibody targeting the acid-sensitive region in chikungunya virus E2 protects from disease. . PLoS Negl Trop Dis 7: e2423. [CrossRef] [PubMed]
    [Google Scholar]
  62. Smith S. A., Silva L. A., Fox J. M., Flyak A., Kose N., Sapparapu G., Khomandiak S., Khomadiak S., Ashbrook A. W. et al.( 2015;). Isolation and characterization of broad and ultrapotent human monoclonal antibodies with therapeutic activity against chikungunya virus. . Cell Host Microbe 18: 86–95. [CrossRef] [PubMed]
    [Google Scholar]
  63. Starlets D., Gore Y., Binsky I., Haran M., Harpaz N., Shvidel L., Becker-Herman S., Berrebi A., Shachar I..( 2006;). Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival. . Blood 107: 4807–4816. [CrossRef] [PubMed]
    [Google Scholar]
  64. Strauss E. G., Stec D. S., Schmaljohn A. L., Strauss J. H..( 1991;). Identification of antigenically important domains in the glycoproteins of Sindbis virus by analysis of antibody escape variants. . J Virol 65: 4654–4664.[PubMed]
    [Google Scholar]
  65. Strauss J. H., Strauss E. G..( 1994;). The alphaviruses: gene expression, replication, and evolution. . Microbiol Rev 58: 491–562.[PubMed]
    [Google Scholar]
  66. Stumptner-Cuvelette P., Benaroch P..( 2002;). Multiple roles of the invariant chain in MHC class II function. . Biochim Biophys Acta 1542: 1–13. [CrossRef] [PubMed]
    [Google Scholar]
  67. Suhrbier A., Jaffar-Bandjee M. C., Gasque P..( 2012;). Arthritogenic alphaviruses – an overview. . Nat Rev Rheumatol 8: 420–429. [CrossRef] [PubMed]
    [Google Scholar]
  68. Tang J., Jose J., Chipman P., Zhang W., Kuhn R. J., Baker T. S..( 2011;). Molecular links between the E2 envelope glycoprotein and nucleocapsid core in Sindbis virus. . J Mol Biol 414: 442–459. [CrossRef] [PubMed]
    [Google Scholar]
  69. Uchime O., Fields W., Kielian M..( 2013;). The role of E3 in pH protection during alphavirus assembly and exit. . J Virol 87: 10255–10262. [CrossRef] [PubMed]
    [Google Scholar]
  70. Uejio C. K., Kemp A., Comrie A. C..( 2012;). Climatic controls on West Nile virus and Sindbis virus transmission and outbreaks in South Africa. . Vector Borne Zoonotic Dis 12: 117–125. [CrossRef] [PubMed]
    [Google Scholar]
  71. Valiño-Rivas L., Baeza-Bermejillo C., Gonzalez-Lafuente L., Sanz A. B., Ortiz A., Sanchez-Niño M. D..( 2015;). CD74 in kidney disease. . Front Immunol 6: 483. [CrossRef] [PubMed]
    [Google Scholar]
  72. Vene S., Franzén C., Niklasson B..( 1994;). Development of specific antibody patterns and clinical symptoms following Ockelbo virus infection. . Arch Virol 134: 61–71. [CrossRef] [PubMed]
    [Google Scholar]
  73. Watson D. G., Moehring J. M., Moehring T. J..( 1991;). A mutant CHO-K1 strain with resistance to Pseudomonas exotoxin A and alphaviruses fails to cleave Sindbis virus glycoprotein PE2. . J Virol 65: 2332–2339.[PubMed]
    [Google Scholar]
  74. Weyand C. M., Hicok K. C., Conn D. L., Goronzy J. J..( 1992;). The influence of HLA-DRB1 genes on disease severity in rheumatoid arthritis. . Ann Intern Med 117: 801–806. [CrossRef] [PubMed]
    [Google Scholar]
  75. Wraight C. J., van Endert P., Möller P., Lipp J., Ling N. R., MacLennan I. C., Koch N., Moldenhauer G..( 1990;). Human major histocompatibility complex class II invariant chain is expressed on the cell surface. . J Biol Chem 265: 5787–5792.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000531
Loading
/content/journal/jgv/10.1099/jgv.0.000531
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error