1887

Abstract

A novel and broadly applicable strategy combining site-directed mutagenesis and DNA assembly for constructing seamless viral chimeras is described using hepatitis C virus (HCV) as an exemplar. Full-length HCV genomic cloning cassettes, which contained flexibly situated restriction endonuclease sites, were prepared via a single, site-directed mutagenesis reaction and digested to receive PCR-amplified virus envelope genes by In-Fusion cloning. Using this method, we were able to construct gene-shuttle cassettes for generation of cell culture-infectious JFH-1-based chimeras containing genotype 1–3 E1E2 genes. Importantly, using this method we also show that E1E2 clones that were not able to support cell entry in the HCV pseudoparticle assay did confer entry when shuttled into the chimeric cell culture chimera system. This method can be easily applied to other genes of study and other viruses and, as such, will greatly simplify reverse genetics studies of variable viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000530
2016-09-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/9/2187.html?itemId=/content/journal/jgv/10.1099/jgv.0.000530&mimeType=html&fmt=ahah

References

  1. Angus P., Vaughan R., Xiong S., Yang H., Delaney W., Gibbs C., Brosgart C., Colledge D., Edwards R. et al. 2003; Resistance to adefovir dipivoxil therapy associated with the selection of a novel mutation in the HBV polymerase. Gastroenterology125:292–297 [CrossRef][PubMed]
    [Google Scholar]
  2. Ball J. K., Tarr A. W., McKeating J. A.. 2014; The past, present and future of neutralizing antibodies for hepatitis C virus. Antivir Res105:100–111 [CrossRef][PubMed]
    [Google Scholar]
  3. Brown R. J., Tarr A. W., McClure C. P., Juttla V. S., Tagiuri N., Irving W. L., Ball J. K.. 2007; Cross-genotype characterization of genetic diversity and molecular adaptation in hepatitis C virus envelope glycoprotein genes. J Gen Virol88:458–469 [CrossRef][PubMed]
    [Google Scholar]
  4. Bukong T. N., Momen-Heravi F., Kodys K., Bala S., Szabo G.. 2014; Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathogens10:e1004424[CrossRef]
    [Google Scholar]
  5. Burton D. R., Poignard P., Stanfield R. L., Wilson I. A.. 2012; Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science337:183–186 [CrossRef][PubMed]
    [Google Scholar]
  6. Chmielewska A. M., Naddeo M., Capone S., Ammendola V., Hu K., Meredith L., Verhoye L., Rychlowska M., Rappuoli R. et al. 2014; Combined adenovirus vector and hepatitis C virus envelope protein prime-boost regimen elicits T cell and neutralizing antibody immune responses. J Virol88:5502–5510 [CrossRef][PubMed]
    [Google Scholar]
  7. Das S. R., Hensley S. E., Ince W. L., Brooke C. B., Subba A., Delboy M. G., Russ G., Gibbs J. S., Bennink J. R., Yewdell J. W.. 2013; Defining influenza A virus hemagglutinin antigenic drift by sequential monoclonal antibody selection. Cell Host Microbe13:314–323 [CrossRef][PubMed]
    [Google Scholar]
  8. deCamp A., Hraber P., Bailer R. T., Seaman M. S., Ochsenbauer C., Kappes J., Gottardo R., Edlefsen P., Self S. et al. 2014; Global panel of HIV-1 Env reference strains for standardized assessments of vaccine-elicited neutralizing antibodies. J Virol88:2489–2507 [CrossRef][PubMed]
    [Google Scholar]
  9. Dutta S., Dlugosz L. S., Drew D. R., Ge X., Ababacar D., Rovira Y. I, Moch J. K., Shi M., Long C. A. et al. 2013; Overcoming antigenic diversity by enhancing the immunogenicity of conserved epitopes on the malaria vaccine candidate apical membrane antigen-1. PLoS Pathogens9:e1003840
    [Google Scholar]
  10. Edmonds T. G., Ding H., Yuan X., Wei Q., Smith K. S., Conway J. A., Wieczorek L., Brown B., Polonis V. et al. 2010; Replication competent molecular clones of HIV-1 expressing Renilla luciferase facilitate the analysis of antibody inhibition in PBMC. Virology408:1–13 [CrossRef][PubMed]
    [Google Scholar]
  11. Gottwein J. M., Scheel T. K., Hoegh A. M., Lademann J. B., Eugen-Olsen J., Lisby G., Bukh J.. 2007; Robust hepatitis C genotype 3a cell culture releasing adapted intergenotypic 3a/2a (S52/JFH1) viruses. Gastroenterology133:1614–1626 [CrossRef][PubMed]
    [Google Scholar]
  12. Imhof I., Simmonds P.. 2010; Development of an intergenotypic hepatitis C virus (HCV) cell culture method to assess antiviral susceptibilities and resistance development of HCV NS3 protease genes from HCV genotypes 1 to 6. J Virol84:4597–4610 [CrossRef][PubMed]
    [Google Scholar]
  13. Imhof I., Simmonds P.. 2011; Genotype differences in susceptibility and resistance development of hepatitis C virus to protease inhibitors telaprevir (VX-950) and danoprevir (ITMN-191). Hepatology53:1090–1099 [CrossRef][PubMed]
    [Google Scholar]
  14. Irwin C. R., Farmer A., Willer D. O., Evans D. H.. 2012; In-fusion® cloning with vaccinia virus DNA polymerase. Methods Mol Biol890:23–35 [CrossRef][PubMed]
    [Google Scholar]
  15. Keck Z., Wang W., Wang Y., Lau P., Carlsen T. H., Prentoe J., Xia J., Patel A. H., Bukh J., Foung S. K.. 2013; Cooperativity in virus neutralization by human monoclonal antibodies to two adjacent regions located at the amino terminus of hepatitis C virus E2 glycoprotein. J Virol87:37–51 [CrossRef][PubMed]
    [Google Scholar]
  16. Kumar S., Stecher G., Tamura K.. 2016; MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  17. Lavillette D., Tarr A. W., Voisset C., Donot P., Bartosch B., Bain C., Patel A. H., Dubuisson J., Ball J. K., Cosset F. L.. 2005; Characterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus. Hepatology41:265–274 [CrossRef][PubMed]
    [Google Scholar]
  18. Lindenbach B. D., Evans M. J., Syder A. J., Wölk B., Tellinghuisen T. L., Liu C. C., Maruyama T., Hynes R. O., Burton D. R. et al. 2005; Complete replication of hepatitis C virus in cell culture. Science309:623–626 [CrossRef][PubMed]
    [Google Scholar]
  19. Mateu G., Donis R. O., Wakita T., Bukh J., Grakoui A.. 2008; Intragenotypic JFH1 based recombinant hepatitis C virus produces high levels of infectious particles but causes increased cell death. Virology376:397–407 [CrossRef][PubMed]
    [Google Scholar]
  20. Owsianka A., Tarr A. W., Juttla V. S., Lavillette D., Bartosch B., Cosset F. L., Ball J. K., Patel A. H.. 2005; Monoclonal antibody AP33 defines a broadly neutralizing epitope on the hepatitis C virus E2 envelope glycoprotein. J Virol79:11095–11104 [CrossRef][PubMed]
    [Google Scholar]
  21. Pietschmann T., Kaul A., Koutsoudakis G., Shavinskaya A., Kallis S., Steinmann E., Abid K., Negro F., Dreux M. et al. 2006; Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci U S A103:7408–7413 [CrossRef][PubMed]
    [Google Scholar]
  22. Reyes-del Valle J., de la Fuente C., Turner M. A., Springfeld C., Apte-Sengupta S., Frenzke M. E., Forest A., Whidby J., Marcotrigiano J. et al. 2012; Broadly neutralizing immune responses against hepatitis C virus induced by vectored measles viruses and a recombinant envelope protein booster. J Virol86:11558–11566 [CrossRef][PubMed]
    [Google Scholar]
  23. Steinmann E., Doerrbecker J., Friesland M., Riebesehl N., Ginkel C., Hillung J., Gentzsch J., Lauber C., Brown R. et al. 2013; Characterization of hepatitis C virus intra- and intergenotypic chimeras reveals a role of the glycoproteins in virus envelopment. J Virol87:13297–13306 [CrossRef][PubMed]
    [Google Scholar]
  24. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  25. Tarr A. W., Urbanowicz R. A., Hamed M. R., Albecka A., McClure C. P., Brown R. J., Irving W. L., Dubuisson J., Ball J. K.. 2011; Hepatitis C patient-derived glycoproteins exhibit marked differences in susceptibility to serum neutralizing antibodies: genetic subtype defines antigenic but not neutralization serotype. J Virol85:4246–4257 [CrossRef][PubMed]
    [Google Scholar]
  26. Tarr A. W., Lafaye P., Meredith L., Damier-Piolle L., Urbanowicz R. A., Meola A., Jestin J. L., Brown R. J., McKeating J. A. et al. 2013; An alpaca nanobody inhibits hepatitis C virus entry and cell-to-cell transmission. Hepatology58:932–939 [CrossRef][PubMed]
    [Google Scholar]
  27. Urbanowicz R. A., McClure C. P., Brown R. J., Tsoleridis T., Persson M. A., Krey T., Irving W. L., Ball J. K., Tarr A. W.. 2015; A diverse panel of hepatitis C virus glycoproteins for use in vaccine research reveals extremes of monoclonal antibody neutralization resistance. J Virol90:3288–3301 [CrossRef][PubMed]
    [Google Scholar]
  28. You S., Stump D. D., Branch A. D., Rice C. M.. 2004; A cis-acting replication element in the sequence encoding the NS5B RNA-dependent RNA polymerase is required for hepatitis C virus RNA replication. J Virol78:1352–1366 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000530
Loading
/content/journal/jgv/10.1099/jgv.0.000530
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Supplementary File 2

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error