1887

Abstract

are small dsDNA viruses with a limited coding capacity. To fulfill all of the functional requirements for propagation and spreading, papillomaviruses use double coding and alternative protein isoforms. E8 ^ E2 is an alternative E2 protein isoform that is generated by fusing the short E8 CDS that completely overlaps E1 to the ‘hinge’ and the DNA-binding region of the E2 protein via alternative transcription/splicing. The papillomaviruses in which E8 ^ E2 mRNA sequences have been described exhibit a sparse phylogenomic distribution. Thus, it is not clear whether E8 ^ E2 is an ancestral protein that has not been described for other papillomavirus types or whether it randomly appears because of the conservation of the E1 protein and occurs only coincidentally. We searched for potential E8 coding sequences in a non-redundant set of papillomaviruses and applied SynPlot2 and an in-house-developed algorithm (cRegions) to determine the most plausible of the above-mentioned scenarios. Beginning with nine experimentally described E8 ^ E2 mRNAs, we predicted the potential E8 CDSs for more than 300 mammalian papillomavirus genomes. According to our analysis, E8 ^ E2 is not a result of E1 coding and represents a protein in its own right, and it most likely has an ancestral origin that precedes the divergence of major mammalian papillomavirus genera.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000526
2016-09-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/9/2333.html?itemId=/content/journal/jgv/10.1099/jgv.0.000526&mimeType=html&fmt=ahah

References

  1. Abril J. F., Castelo R., Guigó R.. ( 2005;). Comparison of splice sites in mammals and chicken. . Genome Res 15: 111–119. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ammermann I., Bruckner M., Matthes F., Iftner T., Stubenrauch F.. ( 2008;). Inhibition of transcription and DNA replication by the papillomavirus E8-E2C protein is mediated by interaction with corepressor molecules. . J Virol 82: 5127–5136. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bergvall M., Melendy T., Archambault J.. ( 2013;). The E1 proteins. . Virology 445: 35–56. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bernard H. U., Burk R. D., Chen Z., van Doorslaer K., zur Hausen H., de Villiers E. M.. ( 2010;). Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. . Virology 401: 70–79. [CrossRef] [PubMed]
    [Google Scholar]
  5. Biryukov J., Meyers C.. ( 2015;). Papillomavirus infectious pathways: a comparison of systems. . Viruses 7: 4303–4325. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bravo I. G., Félez-Sánchez M.. ( 2015;). Papillomaviruses: viral evolution, cancer and evolutionary medicine. . Evol Med Public Health 2015: 32–51. [CrossRef] [PubMed]
    [Google Scholar]
  7. Burset M., Seledtsov I. A., Solovyev V. V.. ( 2000;). Analysis of canonical and non-canonical splice sites in mammalian genomes. . Nucleic Acids Res 28: 4364–4375. [CrossRef] [PubMed]
    [Google Scholar]
  8. Campione-Piccardo J., Montpetit M. L., Grégoire L., Arella M.. ( 1991;). A highly conserved nucleotide string shared by all genomes of human papillomaviruses. . Virus Genes 5: 349–357. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chiang C. M., Broker T. R., Chow L. T.. ( 1991;). An E1ME2C fusion protein encoded by human papillomavirus type 11 is asequence-specific transcription repressor. . J Virol 65: 3317–3329.[PubMed]
    [Google Scholar]
  10. Choe J., Vaillancourt P., Stenlund A., Botchan M.. ( 1989;). Bovine papillomavirus type 1 encodes two forms of a transcriptional repressor: structural and functional analysis of new viral cDNAs. . J Virol 63: 1743–1755.[PubMed]
    [Google Scholar]
  11. Doorbar J., Parton A., Hartley K., Banks L., Crook T., Stanley M., Crawford L.. ( 1990;). Detection of novel splicing patterns in a HPV16-containing keratinocyte cell line. . Virology 178: 254–262. [CrossRef] [PubMed]
    [Google Scholar]
  12. Dvoretzky I., Shober R., Chattopadhyay S. K., Lowy D. R.. ( 1980;). A quantitative in vitro focus assay for bovine papilloma virus. . Virology 103: 369–375. [CrossRef] [PubMed]
    [Google Scholar]
  13. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32: 1792–1797. [CrossRef] [PubMed]
    [Google Scholar]
  14. Egawa N., Egawa K., Griffin H., Doorbar J.. ( 2015;). Human papillomaviruses; epithelial tropisms, and the development of neoplasia. . Viruses 7: 3863–3890. [CrossRef] [PubMed]
    [Google Scholar]
  15. Fertey J., Ammermann I., Winkler M., Stöger R., Iftner T., Stubenrauch F.. ( 2010;). Interaction of the papillomavirus E8E2C protein with the cellular CHD6 protein contributes to transcriptional repression. . J Virol 84: 9505–9515. [CrossRef] [PubMed]
    [Google Scholar]
  16. Fertey J., Hurst J., Straub E., Schenker A., Iftner T., Stubenrauch F.. ( 2011;). Growth inhibition of HeLa cells is a conserved feature of high-risk human papillomavirus E8E2C proteins and can also be achieved by an artificial repressor protein. . J Virol 85: 2918–2926. [CrossRef] [PubMed]
    [Google Scholar]
  17. Firth A. E.. ( 2014;). Mapping overlapping functional elements embedded within the protein-coding regions of RNA viruses. . Nucleic Acids Res 42: 12425–12439. [CrossRef] [PubMed]
    [Google Scholar]
  18. Gog J. R., Afonso E. S., Dalton R. M., Leclercq I., Tiley L., Elton D., von Kirchbach J. C., Naffakh N., Escriou N., Digard P.. ( 2007;). Codon conservation in the influenza A virus genome defines RNA packaging signals. . Nucleic Acids Res 35: 1897–1907. [CrossRef] [PubMed]
    [Google Scholar]
  19. Herbst L. H., Lenz J., Van Doorslaer K., Chen Z., Stacy B. A., Wellehan J. F., Manire C. A., Burk R. D.. ( 2009;). Genomic characterization of two novel reptilian papillomaviruses, Chelonia mydas papillomavirus 1 and Caretta caretta papillomavirus 1. . Virology 383: 131–135. [CrossRef] [PubMed]
    [Google Scholar]
  20. Hermonat P. L., Spalholz B. A., Howley P. M.. ( 1988;). The bovine papillomavirus P2443 promoter is E2 trans-responsive: evidence for E2 autoregulation. . EMBO J 7: 2815–2822.[PubMed] [Crossref]
    [Google Scholar]
  21. Hubbert N. L., Schiller J. T., Lowy D. R., Androphy E. J.. ( 1988;). Bovine papilloma virus-transformed cells contain multiple E2 proteins. . Proc Natl Acad Sci U S A 85: 5864–5868. [CrossRef] [PubMed]
    [Google Scholar]
  22. Isok-Paas H., Männik A., Ustav E., Ustav M.. ( 2015;). The transcription map of HPV11 in U2OS cells adequately reflects the initial and stable replication phases of the viral genome. . Virol J 12: 59. [CrossRef] [PubMed]
    [Google Scholar]
  23. Jeckel S., Loetzsch E., Huber E., Stubenrauch F., Iftner T.. ( 2003;). Identification of the E9/E2C cDNA and functional characterization of the gene product reveal a new repressor of transcription and replication in cottontail rabbit papillomavirus. . J Virol 77: 8736–8744. [CrossRef] [PubMed]
    [Google Scholar]
  24. Katoh K., Standley D. M.. ( 2013;). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. . Mol Biol Evol 30: 772–780. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kurg R., Tekkel H., Abroi A., Ustav M.. ( 2006;). Characterization of the functional activities of the bovine papillomavirus type 1 E2 protein single-chain heterodimers. . J Virol 80: 11218–11225. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kurg R., Uusen P., Sepp T., Sepp M., Abroi A., Ustav M.. ( 2009;). Bovine papillomavirus type 1 E2 protein heterodimer is functional in papillomavirus DNA replication in vivo. . Virology 386: 353–359. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kurg R., Uusen P., Võsa L., Ustav M.. ( 2010;). Human papillomavirus E2 protein with single activation domain initiates HPV18 genome replication, but is not sufficient for long-term maintenance of virus genome. . Virology 408: 159–166. [CrossRef] [PubMed]
    [Google Scholar]
  28. Lace M. J., Anson J. R., Thomas G. S., Turek L. P., Haugen T. H.. ( 2008;). The E8E2C gene product of human papillomavirus type 16 represses early transcription and replication but is dispensable for viral plasmid persistence in keratinocytes. . J Virol 82: 10841–10853. [CrossRef] [PubMed]
    [Google Scholar]
  29. Lace M. J., Ushikai M., Yamakawa Y., Anson J. R., Ishiji T., Turek L. P., Haugen T. H.. ( 2012;). The truncated C-terminal E2 (E2-TR) protein of bovine papillomavirus (BPV) type-1 is a transactivator that modulates transcription in vivo and in vitro in a manner distinct from the E2-TA and E8E2 gene products. . Virology 429: 99–111. [CrossRef] [PubMed]
    [Google Scholar]
  30. Lambert P. F., Hubbert N. L., Howley P. M., Schiller J. T.. ( 1989;). Genetic assignment of multiple E2 gene products in bovine papillomavirus-transformed cells. . Virology 63: 3151–3154.
    [Google Scholar]
  31. Letunic I., Bork P.. ( 2007;). Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. . Bioinformatics 23: 127–128. [CrossRef] [PubMed]
    [Google Scholar]
  32. McBride A. A., Byrne J. C., Howley P. M.. ( 1989;). E2 polypeptides encoded by bovine papillomavirus type 1 form dimers through the common carboxyl-terminal domain: transactivation is mediated by the conserved amino-terminal domain. . Proc Natl Acad Sci U S A 86: 510–514. [CrossRef] [PubMed]
    [Google Scholar]
  33. Palermo-Dilts D. A., Broker T. R., Chow L. T.. ( 1990;). Human papillomavirus type 1 produces redundant as well as polycistronic mRNAs in plantar warts. . J Virol 64: 3144–3149.[PubMed]
    [Google Scholar]
  34. Powell M. L., Smith J. A., Sowa M. E., Harper J. W., Iftner T., Stubenrauch F., Howley P. M.. ( 2010;). NCoR1 mediates papillomavirus E8;E2C transcriptional repression. . J Virol 84: 4451–4460. [CrossRef] [PubMed]
    [Google Scholar]
  35. Rector A., Lemey P., Tachezy R., Mostmans S., Ghim S. J., Van Doorslaer K., Roelke M., Bush M., Montali R. J. et al. ( 2007;). Ancient papillomavirus–host co-speciation in Felidae. . Genome Biol 8: R57. [CrossRef] [PubMed]
    [Google Scholar]
  36. Rector A., Van Ranst M.. ( 2013;). Animal papillomaviruses. . Virology 445: 213–223. [CrossRef] [PubMed]
    [Google Scholar]
  37. Renaud K. J., Cowsert L. M.. ( 1996;). Characterization of human papillomavirus-11 mRNAs expressed in the context of autonomously replicating viral genomes. . Virology 220: 177–185. [CrossRef] [PubMed]
    [Google Scholar]
  38. Roca X., Krainer A. R., Eperon I. C.. ( 2013;). Pick one, but be quick: 5′ splice sites and the problems of too many choices. . Genes Dev 27: 129–144. [CrossRef] [PubMed]
    [Google Scholar]
  39. Rotenberg M. O., Chow L. T., Broker T. R.. ( 1989;). Characterization of rare human papillomavirus type 11 mRNAs coding for regulatory and structural proteins, using the polymerase chain reaction. . Virology 172: 489–497. [CrossRef] [PubMed]
    [Google Scholar]
  40. Sankovski E., Männik A., Geimanen J., Ustav E., Ustav M.. ( 2014;). Mapping of betapapillomavirus human papillomavirus 5 transcription and characterization of viral-genome replication function. . J Virol 88: 961–973. [CrossRef] [PubMed]
    [Google Scholar]
  41. Sankovski E., Karro K., Sepp M., Kurg R., Ustav M., Abroi A.. ( 2015;). Characterization of the nuclear matrix targeting sequence (NMTS) of the BPV1 E8/E2 protein–the shortest known NMTS. . Nucleus 6: 289–300. [CrossRef] [PubMed]
    [Google Scholar]
  42. Shah S. D., Doorbar J., Goldstein R. A.. ( 2010;). Analysis of host– parasite incongruence in papillomavirus evolution using importance sampling. . Mol Biol Evol 27: 1301–1314. [CrossRef] [PubMed]
    [Google Scholar]
  43. Snijders P. J., van den Brule A. J., Schrijnemakers H. F., Raaphorst P. M., Meijer C. J., Walboomers J. M.. ( 1992;). Human papillomavirus type 33 in a tonsillar carcinoma generates its putative E7 mRNA via two E6* transcript species which are terminated at different early region poly(A) sites. . J Virol 66: 3172–3178.[PubMed]
    [Google Scholar]
  44. Straub E., Dreer M., Fertey J., Iftner T., Stubenrauch F.. ( 2014;). The viral E8E2C repressor limits productive replication of human papillomavirus 16. . J Virol 88: 937–947. [CrossRef] [PubMed]
    [Google Scholar]
  45. Straub E., Fertey J., Dreer M., Iftner T., Stubenrauch F.. ( 2015;). Characterization of the human papillomavirus 16 E8 promoter. . J Virol 89: 7304–7313. [CrossRef] [PubMed]
    [Google Scholar]
  46. Stubenrauch F., Hummel M., Iftner T., Laimins L. A.. ( 2000;). The E8E2C protein, a negative regulator of viral transcription and replication, is required for extrachromosomal maintenance of human papillomavirus type 31 in keratinocytes. . J Virol 74: 1178–1186. [CrossRef] [PubMed]
    [Google Scholar]
  47. Stubenrauch F., Zobel T., Iftner T.. ( 2001;). The E8 domain confers a novel long-distance transcriptional repression activity on the E8E2C protein of high-risk human papillomavirus type 31. . J Virol 75: 4139–4149. [CrossRef] [PubMed]
    [Google Scholar]
  48. Suyama M., Torrents D., Bork P.. ( 2006;). PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. . Nucleic Acids Res 34: W609–W612. [CrossRef] [PubMed]
    [Google Scholar]
  49. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  50. Toots M., Männik A., Kivi G., Ustav M., Ustav E., Ustav M.. ( 2014;). The transcription map of human papillomavirus type 18 during genome replication in U2OS cells. . PLoS One 9: e116151. [CrossRef] [PubMed]
    [Google Scholar]
  51. Van Doorslaer K., Tan Q., Xirasagar S., Bandaru S., Gopalan V., Mohamoud Y., Huyen Y., McBride A. A.. ( 2013;). The Papillomavirus Episteme: a central resource for papillomavirus sequence data and analysis. . Nucleic Acids Res 41: D571–D578. [CrossRef] [PubMed]
    [Google Scholar]
  52. Wang X., Meyers C., Wang H. K., Chow L. T., Zheng Z. M.. ( 2011;). Construction of a full transcription map of human papillomavirus type 18 during productive viral infection. . J Virol 85: 8080–8092. [CrossRef] [PubMed]
    [Google Scholar]
  53. Yang L., Mohr I., Li R., Nottoli T., Sun S., Botchan M.. ( 1991;). Transcription factor E2 regulates BPV-1 DNA replication in vitro by direct protein–protein interaction. . Cold Spring Harb Symp Quant Biol 56: 335–346. [CrossRef] [PubMed]
    [Google Scholar]
  54. Zobel T., Iftner T., Stubenrauch F.. ( 2003;). The papillomavirus E8-E2C protein represses DNA replication from extrachromosomal origins. . Mol Cell Biol 23: 8352–8362. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000526
Loading
/content/journal/jgv/10.1099/jgv.0.000526
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Supplementary File 2

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error