1887

Abstract

Vaccinia virus (VACV) is a poxvirus and encodes many proteins that modify the host cell metabolism or inhibit the host response to infection. For instance, it is known that VACV infection can activate the mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) pathway and inhibit activation of the pro-inflammatory transcription factor NF-κB. Since NF-κB and MAPK/AP-1 share common upstream activators we investigated whether six different VACV Bcl-2-like NF-κB inhibitors can also influence MAPK/AP-1 activation. Data presented show that proteins A52, B14 and K7 each contribute to AP-1 activation during VACV infection, and when expressed individually outwith infection. B14 induced the greatest stimulation of AP-1 and further investigation showed B14 activated mainly the MAPKs ERK (extracellular signal-regulated kinase) and JNK (Jun N-terminal kinase), and their substrate c-Jun (a component of AP-1). These data indicate that the same viral protein can have different effects on distinct signalling pathways, in blocking NF-κB activation whilst leading to MAPK/AP-1 activation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000525
2016-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/9/2346.html?itemId=/content/journal/jgv/10.1099/jgv.0.000525&mimeType=html&fmt=ahah

References

  1. Adamson A. L., Darr D., Holley-Guthrie E., Johnson R. A., Mauser A., Swenson J., Kenney S. 2000; Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 activate the ATF2 transcription factor by increasing the levels of phosphorylated p38 and c-Jun N-terminal kinases. J Virol 74:1224–1233 [View Article][PubMed]
    [Google Scholar]
  2. Andrade A. A., Silva P. N., Pereira A. C., De Sousa L. P., Ferreira P. C., Gazzinelli R. T., Kroon E. G., Ropert C., Bonjardim C. A. 2004; The vaccinia virus-stimulated mitogen-activated protein kinase (MAPK) pathway is required for virus multiplication. Biochem J 381:437–446 [View Article][PubMed]
    [Google Scholar]
  3. Arthur J. S., Ley S. C. 2013; Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13:679–692 [View Article][PubMed]
    [Google Scholar]
  4. Bartlett N., Symons J. A., Tscharke D. C., Smith G. L. 2002; The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. J Gen Virol 83:1965–1976 [View Article][PubMed]
    [Google Scholar]
  5. Benfield C. T., Ren H., Lucas S. J., Bahsoun B., Smith G. L. 2013; Vaccinia virus protein K7 is a virulence factor that alters the acute immune response to infection. J Gen Virol 94:1647–1657 [View Article][PubMed]
    [Google Scholar]
  6. Bowie A., Kiss-Toth E., Symons J. A., Smith G. L., Dower S. K., O'Neill L. A. 2000; A46R and A52R from vaccinia virus are antagonists of host IL-1 and Toll-like receptor signaling. Proc Natl Acad Sci U S A 97:10162–10167 [View Article][PubMed]
    [Google Scholar]
  7. Cargnello M., Roux P. P. 2011; Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50–83 [View Article][PubMed]
    [Google Scholar]
  8. Chen R. A., Jacobs N., Smith G. L. 2006; Vaccinia virus strain Western Reserve protein B14 is an intracellular virulence factor. J Gen Virol 87:1451–1458 [View Article][PubMed]
    [Google Scholar]
  9. Chen R. A., Ryzhakov G., Cooray S., Randow F., Smith G. L. 2008; Inhibition of IkappaB kinase by vaccinia virus virulence factor B14. PLoS Pathog 4:e22 [View Article][PubMed]
    [Google Scholar]
  10. Cooray S., Bahar M. W., Abrescia N. G., McVey C. E., Bartlett N. W., Chen R. A., Stuart D. I., Grimes J. M., Smith G. L. 2007; Functional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein. J Gen Virol 88:1656–1666 [View Article][PubMed]
    [Google Scholar]
  11. Cowan K. J., Storey K. B. 2003; Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J Exp Biol 206:1107–1115 [View Article][PubMed]
    [Google Scholar]
  12. de Magalhães J. C., Andrade A. A., Silva P. N., Sousa L. P., Ropert C., Ferreira P. C., Kroon E. G., Gazzinelli R. T., Bonjardim C. A. 2001; A mitogenic signal triggered at an early stage of vaccinia virus infection: implication of MEK/ERK and protein kinase A in virus multiplication. J Biol Chem 276:38353–38360 [View Article][PubMed]
    [Google Scholar]
  13. Fahy A. S., Clark R. H., Glyde E. F., Smith G. L. 2008; Vaccinia virus protein C16 acts intracellularly to modulate the host response and promote virulence. J Gen Virol 89:2377–2387 [View Article][PubMed]
    [Google Scholar]
  14. Fedosyuk S., Grishkovskaya I., de Almeida Ribeiro E., Skern T. 2014; Characterization and structure of the vaccinia virus NF-κB antagonist A46. J Biol Chem 289:3749–3762 [View Article][PubMed]
    [Google Scholar]
  15. Graham S. C., Bahar M. W., Cooray S., Chen R. A.-J., Whalen D. M., Abrescia N. G. A., Alderton D., Owens R. J., Stuart D. I. et al. 2008; Vaccinia virus proteins A52 and B14 Share a Bcl-2-like fold but have evolved to inhibit NF-kappaB rather than apoptosis. PLoS Pathog 4:e1000128 [View Article][PubMed]
    [Google Scholar]
  16. Harte M. T., Haga I. R., Maloney G., Gray P., Reading P. C., Bartlett N. W., Smith G. L., Bowie A., O'Neill L. A. 2003; The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 197:343–351 [View Article][PubMed]
    [Google Scholar]
  17. Kalverda A. P., Thompson G. S., Vogel A., Schröder M., Bowie A. G., Khan A. R., Homans S. W. 2009; Poxvirus K7 protein adopts a Bcl-2 fold: biochemical mapping of its interactions with human DEAD box RNA helicase DDX3. J Mol Biol 385:843–853 [View Article][PubMed]
    [Google Scholar]
  18. Keating S. E., Maloney G. M., Moran E. M., Bowie A. G. 2007; IRAK-2 participates in multiple Toll-like receptor signaling pathways to NFkappaB via activation of TRAF6 ubiquitination. J Biol Chem 282:33435–33443 [View Article][PubMed]
    [Google Scholar]
  19. Kyriakis J. M., Avruch J. 2012; Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 92:689–737 [View Article][PubMed]
    [Google Scholar]
  20. Lee Y. H., Chiu Y. F., Wang W. H., Chang L. K., Liu S. T. 2008; Activation of the ERK signal transduction pathway by Epstein-Barr virus immediate-early protein Rta. J Gen Virol 89:2437–2446 [View Article][PubMed]
    [Google Scholar]
  21. Liu X., Cohen J. I. 2016; Epstein-Barr virus (EBV) tegument protein BGLF2 promotes EBV reactivation through activation of the p38 mitogen-activated protein kinase. J Virol 90:1129–1138 [View Article]
    [Google Scholar]
  22. Maloney G., Schröder M., Bowie A. G. 2005; Vaccinia virus protein A52R activates p38 mitogen-activated protein kinase and potentiates lipopolysaccharide-induced interleukin-10. J Biol Chem 280:30838–30844 [View Article][PubMed]
    [Google Scholar]
  23. Mansur D. S., Maluquer de Motes C., Unterholzner L., Sumner R. P., Ferguson B. J., Ren H., Strnadova P., Bowie A. G., Smith G. L. 2013; Poxvirus targeting of E3 ligase β-TrCP by molecular mimicry: a mechanism to inhibit NF-κB activation and promote immune evasion and virulence. PLoS Pathog 9:e1003183 [View Article][PubMed]
    [Google Scholar]
  24. McFadden G. 2005; Poxvirus tropism. Nat Rev Microbiol 3:201–213 [View Article][PubMed]
    [Google Scholar]
  25. Meng Q., Xia Y. 2011; c-Jun, at the crossroad of the signaling network. Protein Cell 2:889–898 [View Article][PubMed]
    [Google Scholar]
  26. Neidel S., Maluquer de Motes C., Mansur D. S., Strnadova P., Smith G. L., Graham S. C. 2015; Vaccinia virus protein A49 is an unexpected member of the B-cell Lymphoma (Bcl)-2 protein family. J Biol Chem 290:5991–6002 [View Article][PubMed]
    [Google Scholar]
  27. Oda S., Schröder M., Khan A. R. 2009; Structural basis for targeting of human RNA helicase DDX3 by poxvirus protein K7. Structure 17:1528–1537 [View Article][PubMed]
    [Google Scholar]
  28. Parkinson J. E., Smith G. L. 1994; Vaccinia virus gene A36R encodes a M(r) 43-50 K protein on the surface of extracellular enveloped virus. Virology 204:376–390 [View Article][PubMed]
    [Google Scholar]
  29. Pearson G., Robinson F., Beers Gibson T., Xu B. E., Karandikar M., Berman K., Cobb M. H. 2001; Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183 [View Article][PubMed]
    [Google Scholar]
  30. Pereira A. C., Leite F. G., Brasil B. S., Soares-Martins J. A., Torres A. A., Pimenta P. F., Souto-Padrón T., Traktman P., Ferreira P. C. et al. 2012; A vaccinia virus-driven interplay between the MKK4/7-JNK1/2 pathway and cytoskeleton reorganization. J Virol 86:172–184 [View Article][PubMed]
    [Google Scholar]
  31. Postigo A., Martin M. C., Dodding M. P., Way M. 2009; Vaccinia-induced epidermal growth factor receptor-MEK signalling and the anti-apoptotic protein F1L synergize to suppress cell death during infection. Cell Microbiol 11:1208–1218 [View Article][PubMed]
    [Google Scholar]
  32. Santos C. R., Blanco S., Sevilla A., Lazo P. A. 2006; Vaccinia virus B1R kinase interacts with JIP1 and modulates c-Jun-dependent signaling. J Virol 80:7667–7675 [View Article][PubMed]
    [Google Scholar]
  33. Schweneker M., Lukassen S., Späth M., Wolferstätter M., Babel E., Brinkmann K., Wielert U., Chaplin P., Suter M. et al. 2012; The vaccinia virus O1 protein is required for sustained activation of extracellular signal-regulated kinase 1/2 and promotes viral virulence. J Virol 86:2323–2336 [View Article][PubMed]
    [Google Scholar]
  34. Silva P. N., Soares J. A., Brasil B. S., Nogueira S. V., Andrade A. A., de Magalhães J. C., Bonjardim M. B., Ferreira P. C., Kroon E. G. et al. 2006; Differential role played by the MEK/ERK/EGR-1 pathway in orthopoxviruses vaccinia and cowpox biology. Biochem J 398:83–95 [View Article][PubMed]
    [Google Scholar]
  35. Smith G. L., Benfield C. T., Maluquer de Motes C., Mazzon M., Ember S. W., Ferguson B. J., Sumner R. P. 2013; Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity. J Gen Virol 94:2367–2392 [View Article][PubMed]
    [Google Scholar]
  36. Stack J., Bowie A. G. 2012; Poxviral protein A46 antagonizes Toll-like receptor 4 signaling by targeting BB loop motifs in Toll-IL-1 receptor adaptor proteins to disrupt receptor:adaptor interactions. J Biol Chem 287:22672–22682 [View Article][PubMed]
    [Google Scholar]
  37. Stack J., Haga I. R., Schröder M., Bartlett N. W., Maloney G., Reading P. C., Fitzgerald K. A., Smith G. L., Bowie A. G. 2005; Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J Exp Med 201:1007–1018 [View Article][PubMed]
    [Google Scholar]
  38. Stack J., Hurst T. P., Flannery S. M., Brennan K., Rupp S., Oda S., Khan A. R., Bowie A. G. 2013; Poxviral protein A52 stimulates p38 mitogen-activated protein kinase (MAPK) activation by causing tumor necrosis factor receptor-associated factor 6 (TRAF6) self-association leading to transforming growth factor β-activated kinase 1 (TAK1) recruitment. J Biol Chem 288:33642–33653 [View Article][PubMed]
    [Google Scholar]
  39. Sumner R. P., Maluquer de Motes C., Veyer D. L., Smith G. L. 2014; Vaccinia virus inhibits NF-κB-dependent gene expression downstream of p65 translocation. J Virol 88:3092–3102 [View Article][PubMed]
    [Google Scholar]
  40. Unterholzner L., Sumner R. P., Baran M., Ren H., Mansur D. S., Bourke N. M., Randow F., Smith G. L., Bowie A. G. 2011; Vaccinia virus protein C6 is a virulence factor that binds TBK-1 adaptor proteins and inhibits activation of IRF3 and IRF7. PLoS Pathog 7:e1002247 [View Article][PubMed]
    [Google Scholar]
  41. Whitmarsh A. J., Davis R. J. 1996; Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 74:589–607 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000525
Loading
/content/journal/jgv/10.1099/jgv.0.000525
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error