1887

Abstract

DNA polymerase (DNApol) is highly conserved in all baculoviruses and plays an essential role in viral DNA replication. It determines the fidelity of baculovirus DNA replication by inserting the correct nucleotides into the primer terminus and proofreading any mispaired nucleotides. DNApols of groups I and II of the genus in the family share many common structural features. However, it is not clear whether a group I multiple nucleopolyhedrovirus (AcMNPV) DNApol can be substituted by a group II NPV DNApol. Here we report the successful generation of AcMNPV -null virus being rescued by a group II NPV (SpltNPV) (Bac-AcΔPol : Slpol). Viral growth curves and quantitative real-time PCR showed that the replacement reduced the level of viral production and DNA replication of Bac-AcΔPol : SlPol compared with WT, a native insertion in an AcMNPV -null virus. Light microscopy showed that production of occlusion bodies for Bac-AcΔPol : Slpol was reduced. We also identified a nuclear localization signal (NLS) for the SpltNPV DNApol C terminus at residues 827–838 by mutational analysis and confocal microscopy. Multiple point substitution of SpltNPV DNApol NLS abrogated virus production and viral DNA replication. Overall, these data suggested that the NLS plays an important role in SpltNPV DNApol nuclear localization and that SpltNPV DNApol cannot efficiently substitute the AcMNPV DNApol in AcMNPV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000506
2016-08-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/8/1968.html?itemId=/content/journal/jgv/10.1099/jgv.0.000506&mimeType=html&fmt=ahah

References

  1. Au V., Yu M., Carstens E. B.. 2009; Characterization of a baculovirus nuclear localization signal domain in the late expression factor 3 protein. Virology385:209–217 [CrossRef][PubMed]
    [Google Scholar]
  2. Blanco L., Bernad A., Blasco M. A., Salas M.. 1991; A general structure for DNA-dependent DNA polymerases. Gene100:27–38 [CrossRef][PubMed]
    [Google Scholar]
  3. Braithwaite D. K., Ito J.. 1993; Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res21:787–802 [CrossRef][PubMed]
    [Google Scholar]
  4. Braunagel S. C., Russell W. K., Rosas-Acosta G., Russell D. H., Summers M. D.. 2003; Determination of the protein composition of the occlusion-derived virus of Autographa californica nucleopolyhedrovirus. Proc Natl Acad Sci U S A100:9797–9802 [CrossRef][PubMed]
    [Google Scholar]
  5. Bulach D. M., Kumar C. A., Zaia A., Liang B., Tribe D. E.. 1999; Group II nucleopolyhedrovirus subgroups revealed by phylogenetic analysis of polyhedrin and DNA polymerase gene sequences. J Invertebr Pathol73:59–73 [CrossRef][PubMed]
    [Google Scholar]
  6. Chaeychomsri S., Ikeda M., Kobayashi M.. 1995; Nucleotide sequence and transcriptional analysis of the DNA polymerase gene of Bombyx mori nuclear polyhedrosis virus. Virology206:435–447 [CrossRef][PubMed]
    [Google Scholar]
  7. Chen L., Liao G., Fujimuro M., Semmes O. J., Hayward S. D.. 2001; Properties of two EBV Mta nuclear export signal sequences. Virology288:119–128 [CrossRef][PubMed]
    [Google Scholar]
  8. Chen Z., Carstens E. B.. 2005; Identification of domains in Autographa californica multiple nucleopolyhedrovirus late expression factor 3 required for nuclear transport of P143. J Virol79:10915–10922 [CrossRef][PubMed]
    [Google Scholar]
  9. Chiu J., March P. E., Lee R., Tillett D.. 2004; Site-directed, Ligase-Independent Mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic Acids Res32:e174 [CrossRef][PubMed]
    [Google Scholar]
  10. Conti E., Uy M., Leighton L., Blobel G., Kuriyan J.. 1998; Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell94:193–204 [CrossRef][PubMed]
    [Google Scholar]
  11. de Jong J., Theilmann D. A., Arif B. M., Krell P. J.. 2011; Immediate-early protein ME53 forms foci and colocalizes with GP64 and the major capsid protein VP39 at the cell membranes of Autographa californica multiple nucleopolyhedrovirus-infected cells. J Virol85:9696–9707 [CrossRef][PubMed]
    [Google Scholar]
  12. Deng F., Wang R., Fang M., Jiang Y., Xu X., Wang H., Chen X., Arif B. M., Guo L. et al. 2007; Proteomics analysis of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus identified two new occlusion-derived virus-associated proteins, HA44 and HA100. J Virol81:9377–9385 [CrossRef][PubMed]
    [Google Scholar]
  13. Federici B. A.. 1997; Baculovirus pathogenesis. In The Baculoviruses , pp.33–56 Edited by Miller L. K.. New York: Plenum Press;[CrossRef]
    [Google Scholar]
  14. Feng G., Thumbi D. K., de Jong J., Hodgson J. J., Arif B. M., Doucet D., Krell P. J.. 2012; Selection and characterization of Autographa californica multiple nucleopolyhedrovirus DNA polymerase mutations. J Virol86:13576–13588 [CrossRef][PubMed]
    [Google Scholar]
  15. Feng G., Krell P. J.. 2014; Autographa californica multiple nucleopolyhedrovirus DNA polymerase C terminus is required for nuclear localization and viral DNA replication. J Virol88:10918–10933 [CrossRef][PubMed]
    [Google Scholar]
  16. Fontes M. R., Teh T., Kobe B.. 2000; Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. J Mol Biol297:1183–1194 [CrossRef][PubMed]
    [Google Scholar]
  17. Goldfarb D. S., Corbett A. H., Mason D. A., Harreman M. T., Adam S. A.. 2004; Importin alpha: a multipurpose nuclear-transport receptor. Trends Cell Biol14:505–514 [CrossRef][PubMed]
    [Google Scholar]
  18. Guo Z. J., Wang D. X., Yao Q., Chen K. P., Zhang C. X.. 2010; Identification of a novel functional nuclear localization signal in the protein encoded by open reading frame 47 of Bombyx mori nucleopolyhedrovirus. Arch Virol155:1943–1950 [CrossRef][PubMed]
    [Google Scholar]
  19. Hang X., Guarino L. A.. 1999; Purification of Autographa californica nucleopolyhedrovirus DNA polymerase from infected insect cells. J Gen Virol80:2519–2526 [CrossRef][PubMed]
    [Google Scholar]
  20. Herold A., Truant R., Wiegand H., Cullen B. R.. 1998; Determination of the functional domain organization of the importin alpha nuclear import factor. J Cell Biol143:309–318 [CrossRef][PubMed]
    [Google Scholar]
  21. Hodgson J. J., Arif B. M., Krell P. J.. 2011; Interaction of Autographa californica multiple nucleopolyhedrovirus cathepsin protease progenitor (proV-CATH) with insect baculovirus chitinase as a mechanism for proV-CATH cellular retention. J Virol85:3918–3929 [CrossRef][PubMed]
    [Google Scholar]
  22. Huang J., Levin D. B.. 2001; Identification, transcription and sequence analysis of the Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) DNA polymerase gene. Arch Virol146:303–326 [CrossRef][PubMed]
    [Google Scholar]
  23. Jarvis D. L., Bohlmeyer D. A., Garcia A.. 1991; Requirements for nuclear localization and supramolecular assembly of a baculovirus polyhedrin protein. Virology185:795–810 [CrossRef][PubMed]
    [Google Scholar]
  24. Juillard F., Hiriart E., Sergeant N., Vingtdeux-Didier V., Drobecq H., Sergeant A., Manet E., Gruffat H.. 2009; Epstein-Barr virus protein EB2 contains an N-terminal transferable nuclear export signal that promotes nucleocytoplasmic export by directly binding TAP/NXF1. J Virol83:12759–12768 [CrossRef][PubMed]
    [Google Scholar]
  25. Kalland K. H., Szilvay A. M., Brokstad K. A., Saetrevik W., Haukenes G.. 1994; The human immunodeficiency virus type 1 Rev protein shuttles between the cytoplasm and nuclear compartments. Mol Cell Biol14:7436–7444 [CrossRef][PubMed]
    [Google Scholar]
  26. Kool M., Ahrens C. H., Goldbach R. W., Rohrmann G. F., Vlak J. M.. 1994; Identification of genes involved in DNA replication of the Autographa californica baculovirus. Proc Natl Acad Sci U S A91:11212–11216 [CrossRef][PubMed]
    [Google Scholar]
  27. Kosugi S., Hasebe M., Matsumura N., Takashima H., Miyamoto-Sato E., Tomita M., Yanagawa H.. 2009; Six classes of nuclear localization signals specific to different binding grooves of importin alpha. J Biol Chem284:478–485 [CrossRef][PubMed]
    [Google Scholar]
  28. Macara I. G.. 2001; Transport into and out of the nucleus. Microbiol Mol Biol Rev65:570–594 [CrossRef][PubMed]
    [Google Scholar]
  29. Marfori M., Lonhienne T. G., Forwood J. K., Kobe B.. 2012; Structural basis of high-affinity nuclear localization signal interactions with importin-α. Traffic13:532–548 [CrossRef][PubMed]
    [Google Scholar]
  30. Mears W. E., Rice S. A.. 1998; The herpes simplex virus immediate-early protein ICP27 shuttles between nucleus and cytoplasm. Virology242:128–137 [CrossRef][PubMed]
    [Google Scholar]
  31. Miller L. K., Jewell J. E., Browne D.. 1981; Baculovirus induction of a DNA polymerase. J Virol40:305–308[PubMed]
    [Google Scholar]
  32. O'Reilly D. R., Miller L. K., Luckow V. A.. 1992; Baculovirus Expression Vectors: A Laboratory Manual New York: W. H. Freeman and Co;
    [Google Scholar]
  33. Okano K., Vanarsdall A. L., Mikhailov V. S., Rohrmann G. F.. 2006; Conserved molecular systems of the Baculoviridae. Virology344:77–87 [CrossRef][PubMed]
    [Google Scholar]
  34. Olson V. A., Wetter J. A., Friesen P. D.. 2002; Baculovirus transregulator IE1 requires a dimeric nuclear localization element for nuclear import and promoter activation. J Virol76:9505–9515 [CrossRef][PubMed]
    [Google Scholar]
  35. Pang Y., Yu J., Wang L., Hu X., Bao W., Li G., Chen C., Han H., Hu S. et al. 2001; Sequence analysis of the Spodoptera litura multicapsid nucleopolyhedrovirus genome. Virology287:391–404 [CrossRef][PubMed]
    [Google Scholar]
  36. Phelan A., Clements J. B.. 1997; Herpes simplex virus type 1 immediate early protein IE63 shuttles between nuclear compartments and the cytoplasm. J Gen Virol78:3327–3331 [CrossRef][PubMed]
    [Google Scholar]
  37. Ruvolo V., Gupta A. K., Swaminathan S.. 2001; Epstein-Barr virus SM protein interacts with mRNA in vivo and mediates a gene-specific increase in cytoplasmic mRNA. J Virol75:6033–6041 [CrossRef][PubMed]
    [Google Scholar]
  38. Sandri-Goldin R. M.. 1998; ICP27 mediates HSV RNA export by shuttling through a leucine-rich nuclear export signal and binding viral intronless RNAs through an RGG motif. Genes Dev12:868–879 [CrossRef][PubMed]
    [Google Scholar]
  39. Taniguchi I., Mabuchi N., Ohno M.. 2014; HIV-1 Rev protein specifies the viral RNA export pathway by suppressing TAP/NXF1 recruitment. Nucleic Acids Res42:6645–6658 [CrossRef][PubMed]
    [Google Scholar]
  40. Tomalski M. D., Wu J. G., Miller L. K.. 1988; The location, sequence, transcription, and regulation of a baculovirus DNA polymerase gene. Virology167:591–600 [CrossRef][PubMed]
    [Google Scholar]
  41. Vaughn J. L., Goodwin R. H., Tompkins G. J., McCawley P.. 1977; The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro13:213–217 [CrossRef][PubMed]
    [Google Scholar]
  42. Wang Y., Wang Q., Liang C., Song J., Li N., Shi H., Chen X.. 2008; Autographa californica multiple nucleopolyhedrovirus nucleocapsid protein BV/ODV-C42 mediates the nuclear entry of P78/83. J Virol82:4554–4561 [CrossRef][PubMed]
    [Google Scholar]
  43. Weis K.. 2003; Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell112:441–451 [CrossRef][PubMed]
    [Google Scholar]
  44. Yu J. H., Hamari Z., Han K. H., Seo J. A., Reyes-Domínguez Y., Scazzocchio C.. 2004; Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol41:973–981 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000506
Loading
/content/journal/jgv/10.1099/jgv.0.000506
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error