1887

Abstract

Dengue virus (DENV) replication is known to prevent maturation of infected dendritic cells (DCs) thereby impeding the development of adequate immunity. During secondary DENV infection, dengue-specific antibodies can suppress DENV replication in immature DCs (immDCs), however how dengue-antibody complexes (DENV-IC) influence the phenotype of DCs remains elusive. Here, we evaluated the maturation state and cytokine profile of immDCs exposed to DENV-ICs. Indeed, DENV infection of immDCs in the absence of antibodies was hallmarked by blunted upregulation of CD83, CD86 and the major histocompatibility complex molecule HLA-DR. In contrast, DENV infection in the presence of neutralizing antibodies triggered full DC maturation and induced a balanced inflammatory cytokine response. Moreover, DENV infection under non-neutralizing conditions prompted upregulation of CD83 and CD86 but not HLA-DR, and triggered production of pro-inflammatory cytokines. The effect of DENV-IC was found to be dependent on the engagement of FcγRIIa. Altogether, our data show that the presence of DENV-IC alters the phenotype and cytokine profile of DCs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000491
2016-07-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/7/1584.html?itemId=/content/journal/jgv/10.1099/jgv.0.000491&mimeType=html&fmt=ahah

References

  1. Banchereau J., Steinman R. M..( 1998;). Dendritic cells and the control of immunity. . Nature 392: 245–252. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bhatt S., Gething P. W., Brady O. J., Messina J. P., Farlow A. W., Moyes C. L., Drake J. M., Brownstein J. S., Hoen A. G. et al.( 2013;). The global distribution and burden of dengue. . Nature 496: 504–507. [CrossRef] [PubMed]
    [Google Scholar]
  3. Boonnak K., Dambach K. M., Donofrio G. C., Tassaneetrithep B., Marovich M. A..( 2011;). Cell type specificity and host genetic polymorphisms influence antibody-dependent enhancement of dengue virus infection. . J Virol 85: 1671–1683. [CrossRef] [PubMed]
    [Google Scholar]
  4. Boonnak K., Slike B. M., Burgess T. H., Mason R. M., Wu S. J., Sun P., Porter K., Rudiman I. F., Yuwono D. et al.( 2008;). Role of dendritic cells in antibody-dependent enhancement of dengue virus infection. . J Virol 82: 3939–3951. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cella M., Sallusto F., Lanzavecchia A..( 1997;). Origin, maturation and antigen presenting function of dendritic cells. . Curr Opin Immunol 9: 10–16.[PubMed] [CrossRef]
    [Google Scholar]
  6. Chang T. H., Chen S. R., Yu C. Y., Lin Y. S., Chen Y. S., Kubota T., Lin Y. L..( 2012;). Dengue virus serotype 2 blocks extracellular signal-regulated kinase and nuclear factor-kappaB activation to downregulate cytokine production. . PloS One 7: e41635.[CrossRef]
    [Google Scholar]
  7. Chawla T., Chan K. R., Zhang S. L., Tan H. C., Lim A. P., Hanson B. J., Ooi E. E..( 2013;). Dengue virus neutralization in cells expressing Fc gamma receptors. . PLoS One 8: e65231. [CrossRef] [PubMed]
    [Google Scholar]
  8. Costa V. V., Fagundes C. T., Souza D. G., Teixeira M. M..( 2013;). Inflammatory and innate immune responses in dengue infection: protection versus disease induction. . Am J Pathol 182: 1950–1961. [CrossRef] [PubMed]
    [Google Scholar]
  9. de Alwis R., Beltramello M., Messer W. B., Sukupolvi-Petty S., Wahala W. M., Kraus A., Olivarez N. P., Pham Q., Brien J. D. et al.( 2011;). In-depth analysis of the antibody response of individuals exposed to primary dengue virus infection. . PLoS Negl Trop Dis 5: e1188. [CrossRef] [PubMed]
    [Google Scholar]
  10. de Witte L., Abt M., Schneider-Schaulies S., van Kooyk Y., Geijtenbeek T. B..( 2006;). Measles virus targets DC-SIGN to enhance dendritic cell infection. . J Virol 80: 3477–3486. [CrossRef] [PubMed]
    [Google Scholar]
  11. Dejnirattisai W., Webb A. I., Chan V., Jumnainsong A., Davidson A., Mongkolsapaya J., Screaton G..( 2011;). Lectin switching during dengue virus infection. . J Infect Dis 203: 1775–1783. [CrossRef] [PubMed]
    [Google Scholar]
  12. den Dunnen J., Vogelpoel L. T., Wypych T., Muller F. J., de Boer L., Kuijpers T. W., Zaat S. A., Kapsenberg M. L., de Jong E. C..( 2012;). IgG opsonization of bacteria promotes Th17 responses via synergy between TLRs and FcγRIIa in human dendritic cells. . Blood 120: 112–121. [CrossRef] [PubMed]
    [Google Scholar]
  13. Dudek A. M., Martin S., Garg A. D., Agostinis P..( 2013;). Immature, semi-mature, and fully mature dendritic cells: toward a DC-cancer cells interface that augments anticancer immunity. . Front Immunol 4: 438. [CrossRef] [PubMed]
    [Google Scholar]
  14. Endy T. P., Nisalak A., Chunsuttitwat S., Vaughn D. W., Green S., Ennis F. A., Rothman A. L., Libraty D. H..( 2004;). Relationship of preexisting dengue virus (DV) neutralizing antibody levels to viremia and severity of disease in a prospective cohort study of DV infection in Thailand. . J Infect Dis 189: 990–1000. [CrossRef] [PubMed]
    [Google Scholar]
  15. Green S., Rothman A..( 2006;). Immunopathological mechanisms in dengue and dengue hemorrhagic fever. . Curr Opin Infect Dis 19: 429–436. [CrossRef] [PubMed]
    [Google Scholar]
  16. Gudmundsson G., Bosch A., Davidson B. L., Berg D. J., Hunninghake G. W..( 1998;). Interleukin-10 modulates the severity of hypersensitivity pneumonitis in mice. . Am J Respir Cell Mol Biol 19: 812–818. [CrossRef] [PubMed]
    [Google Scholar]
  17. Halstead S. B..( 2003;). Neutralization and antibody-dependent enhancement of dengue viruses. . Adv Virus Res 60: 421–467.[PubMed] [CrossRef]
    [Google Scholar]
  18. Halstead S. B..( 2007;). Dengue. . Lancet 370: 1644–1652. [CrossRef] [PubMed]
    [Google Scholar]
  19. Hause A. M., Perez-Padilla J., Horiuchi K., Han G. S., Hunsperger E., Aiwazian J., Margolis H. S., Tomashek K. M..( 2015;). Epidemiology of dengue among children aged < 18 months-Puerto Rico, 1999–2011. . Am J Trop Med Hyg 94: 404–408. [CrossRef] [PubMed]
    [Google Scholar]
  20. Ho L. J., Wang J. J., Shaio M. F., Kao C. L., Chang D. M., Han S. W., Lai J. H..( 2001;). Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. . J Immunol 166: 1499–1506.[PubMed] [CrossRef]
    [Google Scholar]
  21. Kliks S. C., Nimmanitya S., Nisalak A., Burke D. S..( 1988;). Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. . Am J Trop Med Hyg 38: 411–419.[PubMed]
    [Google Scholar]
  22. Libraty D. H., Pichyangkul S., Ajariyakhajorn C., Endy T. P., Ennis F. A..( 2001;). Human dendritic cells are activated by dengue virus infection: enhancement by gamma interferon and implications for disease pathogenesis. . J Virol 75: 3501–3508. [CrossRef] [PubMed]
    [Google Scholar]
  23. Lilley B. N., Ploegh H. L..( 2005;). Viral modulation of antigen presentation: manipulation of cellular targets in the ER and beyond. . Immunol Rev 207: 126–144. [CrossRef] [PubMed]
    [Google Scholar]
  24. Liu L., Chavan R., Feinberg M. B..( 2008;). Dendritic cells are preferentially targeted among hematolymphocytes by modified vaccinia virus ankara and play a key role in the induction of virus-specific T cell responses in vivo. . BMC Immunology 9: 15. [CrossRef] [PubMed]
    [Google Scholar]
  25. Lutz M. B., Schuler G..( 2002;). Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity?. Trends Immunol 23: 445–449. [CrossRef] [PubMed]
    [Google Scholar]
  26. Mangada M. M., Rothman A. L..( 2005;). Altered cytokine responses of dengue-specific CD4+ T cells to heterologous serotypes. . J Immunol 175: 2676–2683.[PubMed] [CrossRef]
    [Google Scholar]
  27. Marovich M., Grouard-Vogel G., Louder M., Eller M., Sun W., Wu S. J., Putvatana R., Murphy G., Tassaneetrithep B. et al.( 2001;). Human dendritic cells as targets of dengue virus infection. . J Investig Dermatol Symp Proc 6: 219–224. [CrossRef] [PubMed]
    [Google Scholar]
  28. Mathew A., Kurane I., Green S., Vaughn D. W., Kalayanarooj S., Suntayakorn S., Ennis F. A., Rothman A. L..( 1999;). Impaired T cell proliferation in acute dengue infection. . J Immunol 162: 5609–5615.
    [Google Scholar]
  29. Miller R. L., Meng T. C., Tomai M. A..( 2008;). The antiviral activity of Toll-like receptor 7 and 7/8 agonists. . Drug News Perspect 21: 69–87. [CrossRef] [PubMed]
    [Google Scholar]
  30. Modhiran N., Kalayanarooj S., Ubol S..( 2010;). Subversion of innate defenses by the interplay between DENV and pre-existing enhancing antibodies: TLRs signaling collapse. . PLoS Negl Trop Dis 4: e924. [CrossRef] [PubMed]
    [Google Scholar]
  31. Moi M. L., Lim C. K., Takasaki T., Kurane I..( 2010;). Involvement of the Fc gamma receptor IIA cytoplasmic domain in antibody-dependent enhancement of dengue virus infection. . J Gen Virol 91: 103–111. [CrossRef] [PubMed]
    [Google Scholar]
  32. Muñoz-Jordan J. L., Sánchez-Burgos G. G., Laurent-Rolle M., García-Sastre A..( 2003;). Inhibition of interferon signaling by dengue virus. . Proc Natl Acad Sci U S A 100: 14333–14338. [CrossRef] [PubMed]
    [Google Scholar]
  33. Muñoz-Jordán J. L..( 2010;). Subversion of interferon by dengue virus. . Curr Top Microbiol Immunol 338: 35–44. [CrossRef] [PubMed]
    [Google Scholar]
  34. Navarro-Sánchez E., Desprès P., Cedillo-Barrón L..( 2005;). Innate immune responses to dengue virus. . Arch Med Res 36: 425–435. [CrossRef] [PubMed]
    [Google Scholar]
  35. Nightingale Z. D., Patkar C., Rothman A. L..( 2008;). Viral replication and paracrine effects result in distinct, functional responses of dendritic cells following infection with dengue 2 virus. . J Leukoc Biol 84: 1028–1038. [CrossRef] [PubMed]
    [Google Scholar]
  36. Nimmerjahn F., Ravetch J. V..( 2008;). Fcgamma receptors as regulators of immune responses. . Nat Rev Immunol 8: 34–47. [CrossRef] [PubMed]
    [Google Scholar]
  37. Oreshkova N., Wichgers Schreur P. J., Spel L., Vloet R. P., Moormann R. J., Boes M., Kortekaas J..( 2015;). Nonspreading Rift Valley fever virus infection of human dendritic cells results in downregulation of CD83 and full maturation of bystander cells. . PLoS One 10: e0142670. [CrossRef] [PubMed]
    [Google Scholar]
  38. Palmer D. R., Sun P., Celluzzi C., Bisbing J., Pang S., Sun W., Marovich M. A., Burgess T..( 2005;). Differential effects of dengue virus on infected and bystander dendritic cells. . J Virol 79: 2432–2439. [CrossRef] [PubMed]
    [Google Scholar]
  39. Pang T., Cardosa M. J., Guzman M. G..( 2007;). Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS). . Immunol Cell Biol 85: 43–45. [CrossRef] [PubMed]
    [Google Scholar]
  40. Regnault A., Lankar D., Lacabanne V., Rodriguez A., Théry C., Rescigno M., Saito T., Verbeek S., Bonnerot C. et al.( 1999;). Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. . J Exp Med 189: 371–380.[PubMed] [CrossRef]
    [Google Scholar]
  41. Reich N. G., Shrestha S., King A. A., Rohani P., Lessler J., Kalayanarooj S., Yoon I. K., Gibbons R. V., Burke D. S., Cummings D. A..( 2013;). Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. . J R Soc Interface 10: 20130414. [CrossRef] [PubMed]
    [Google Scholar]
  42. Richter M. K. S., da Silva Voorham J. M., Torres Pedraza S., Hoornweg T. E., van de Pol D. P. I., Rodenhuis-Zybert I. A., Wilschut J., Smit J. M..( 2014;). Immature dengue virus is infectious in human immature dendritic cells via interaction with the receptor molecule DC-SIGN. . PLoS ONE 9: e98785. [CrossRef]
    [Google Scholar]
  43. Rinaldo C. R..( 2013;). HIV-1 trans infection of CD4(+) T cells by professional antigen presenting cells. . Scientifica (Cairo) 2013: 164203. [CrossRef] [PubMed]
    [Google Scholar]
  44. Rodenhuis-Zybert I. A., van der Schaar H. M., da Silva Voorham J. M., van der Ende-Metselaar H., Lei H. Y., Wilschut J., Smit J. M..( 2010;). Immature dengue virus: a veiled pathogen?. PLoS Pathog 6: e1000718. [CrossRef] [PubMed]
    [Google Scholar]
  45. Rodrigo W. W., Jin X., Blackley S. D., Rose R. C., Schlesinger J. J..( 2006;). Differential enhancement of dengue virus immune complex infectivity mediated by signaling-competent and signaling-incompetent human Fcgamma RIA (CD64) or FcgammaRIIA (CD32). . J Virol 80: 10128–10138. [CrossRef] [PubMed]
    [Google Scholar]
  46. Rodriguez-Madoz J. R., Belicha-Villanueva A., Bernal-Rubio D., Ashour J., Ayllon J., Fernandez-Sesma A..( 2010a;). Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex. . J Virol 84: 9760–9774. [CrossRef] [PubMed]
    [Google Scholar]
  47. Rodriguez-Madoz J. R., Bernal-Rubio D., Kaminski D., Boyd K., Fernandez-Sesma A..( 2010b;). Dengue virus inhibits the production of type I interferon in primary human dendritic cells. . J Virol 84: 4845–4850. [CrossRef] [PubMed]
    [Google Scholar]
  48. Rothman A. L..( 2011;). Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. . Nat Rev Immunol 11: 532–543. [CrossRef] [PubMed]
    [Google Scholar]
  49. Sanchez V., Hessler C., DeMonfort A., Lang J., Guy B..( 2006;). Comparison by flow cytometry of immune changes induced in human monocyte-derived dendritic cells upon infection with dengue 2 live-attenuated vaccine or 16681 parental strain. . FEMS Immunol Med Microbiol 46: 113–123. [CrossRef] [PubMed]
    [Google Scholar]
  50. Schmid M. A., Harris E..( 2014;). Monocyte recruitment to the dermis and differentiation to dendritic cells increases the targets for dengue virus replication. . PLoS Pathog 10: e1004541. [CrossRef] [PubMed]
    [Google Scholar]
  51. Schuurhuis D. H., van Montfoort N., Ioan-Facsinay A., Jiawan R., Camps M., Nouta J., Melief C. J., Verbeek J. S., Ossendorp F..( 2006;). Immune complex-loaded dendritic cells are superior to soluble immune complexes as antitumor vaccine. . J Immunol 176: 4573–4580.[PubMed] [CrossRef]
    [Google Scholar]
  52. Simmons C. P., Chau T. N., Thuy T. T., Tuan N. M., Hoang D. M., Thien N. T., Lien le B., Quy N. T., Hieu N. T. et al.( 2007;). Maternal antibody and viral factors in the pathogenesis of dengue virus in infants. . J Infect Dis 196: 416–424. [CrossRef] [PubMed]
    [Google Scholar]
  53. Soundravally R., Hoti S. L., Patil S. A., Cleetus C. C., Zachariah B., Kadhiravan T., Narayanan P., Kumar B. A..( 2014;). Association between proinflammatory cytokines and lipid peroxidation in patients with severe dengue disease around defervescence. . Int J Infect Dis 18: 68– 72. [CrossRef] [PubMed]
    [Google Scholar]
  54. Sun P., Fernandez S., Marovich M. A., Palmer D. R., Celluzzi C. M., Boonnak K., Liang Z., Subramanian H., Porter K. R. et al.( 2009;). Functional characterization of ex vivo blood myeloid and plasmacytoid dendritic cells after infection with dengue virus. . Virology 383: 207–215. [CrossRef] [PubMed]
    [Google Scholar]
  55. van der Poll T., Marchant A., Buurman W. A., Berman L., Keogh C. V., Lazarus D. D., Nguyen L., Goldman M., Moldawer L. L., Lowry S. F..( 1995;). Endogenous IL-10 protects mice from death during septic peritonitis. . J Immunol 155: 5397–5401.[PubMed]
    [Google Scholar]
  56. van der Schaar H. M., Rust M. J., Chen C., van der Ende-Metselaar H., Wilschut J., Zhuang X., Smit J. M..( 2008;). Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. . PLoS Pathog 4: e1000244. [CrossRef] [PubMed]
    [Google Scholar]
  57. van der Schaar H. M., Rust M. J., Waarts B. L., van der Ende-Metselaar H., Kuhn R. J., Wilschut J., Zhuang X., Smit J. M..( 2007;). Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. . J Virol 81: 12019–12028. [CrossRef] [PubMed]
    [Google Scholar]
  58. van der Schaar H. M., Wilschut J. C., Smit J. M..( 2009;). Role of antibodies in controlling dengue virus infection. . Immunobiology 214: 613–629. [CrossRef] [PubMed]
    [Google Scholar]
  59. Vogelpoel L. T., Hansen I. S., Rispens T., Muller F. J., van Capel T. M., Turina M. C., Vos J. B., Baeten D. L., Kapsenberg M. L. et al.( 2014;). Fc gamma receptor-TLR cross-talk elicits pro-inflammatory cytokine production by human M2 macrophages. . Nat Commun 5: 5444. [CrossRef] [PubMed]
    [Google Scholar]
  60. WHO( 1997;). Dengue hemorrhagic fever: diagnosis, treatment, prevention and control. world health organization;.
    [Google Scholar]
  61. Wu S. J., Grouard-Vogel G., Sun W., Mascola J. R., Brachtel E., Putvatana R., Louder M. K., Filgueira L., Marovich M. A. et al.( 2000;). Human skin Langerhans cells are targets of dengue virus infection. . Nat Med 6: 816–820. [CrossRef] [PubMed]
    [Google Scholar]
  62. Yao Y., Li W., Kaplan M. H., Chang C. H..( 2005;). Interleukin (IL)-4 inhibits IL-10 to promote IL-12 production by dendritic cells. . J Exp Med 201: 1899–1903. [CrossRef] [PubMed]
    [Google Scholar]
  63. Zybert I. A., van der Ende-Metselaar H., Wilschut J., Smit J. M..( 2008;). Functional importance of dengue virus maturation: infectious properties of immature virions. . J Gen Virol 89: 3047–3051. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000491
Loading
/content/journal/jgv/10.1099/jgv.0.000491
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error