1887

Abstract

Analysis of human cytomegalovirus (HCMV) primary infection in immunocompetent (n=40) and immunocompromised transplant patients (n=20) revealed that the median peak antibody titre neutralizing infection of epithelial cells was 16-fold higher in immunocompromised patients. The mechanism of this finding was investigated by measuring: (i) HCMV DNAemia; (ii) HCMV neutralizing antibodies; (iii) ELISA IgG antibody titre to HCMV glycoprotein complexes gHgLpUL128L, gHgLgO and gB; and (iv) HCMV-specific (IFN-γ) CD4 and CD8 T-cells. Circulating CXCR5 CD4 (memory T follicular helper – TFH-cells) were identified as activated TFH (ICOSPD-1CCR7) and quiescent cells. In the early stages of primary infection, activated TFH cells increased in number. Concomitantly, both neutralizing and IgG antibodies to HCMV glycoproteins reached a peak, followed by a plateau. A stop in antibody rise occurred upon appearance of HCMV-specific CD4 T-cells, HCMV clearance and progressive reduction in activated TFH cells. The main differences between healthy and transplant patients were that the latter had a delayed DNA peak, a much higher DNA load and delayed activated TFH cells and antibody peaks. Similar events were observed in clinically severe HCMV reactivations of transplant patients. A preliminary analysis of the specificity of the activated TFH cell response to viral proteins showed a major response to the pentamer gHgLpUL128L and gB. In conclusion, in the absence of T-cell immunity, one of the first lines of defence, during primary infection, is conferred by antibodies produced through the interaction of TFH cells and B-cells of germinal centres, resulting in differentiation of B-cells into antibody producing plasma cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000488
2016-08-01
2019-09-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/8/1928.html?itemId=/content/journal/jgv/10.1099/jgv.0.000488&mimeType=html&fmt=ahah

References

  1. Bentebibel S.-E. , Lopez S. , Obermoser G. , Schmitt N. , Mueller C. , Harrod C. , Flano E. , Mejias A. , Albrecht R. A. et al. ( 2013;). Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination. . Sci Transl Med 5: ra132. [CrossRef]
    [Google Scholar]
  2. Boswell K. L. , Paris R. , Boritz E. , Ambrozak D. , Yamamoto T. , Darko S. , Wloka K. , Wheatley A. , Narpala S. et al. ( 2014;). Loss of circulating CD4 T cells with B cell helper function during chronic HIV infection. . PLoS Pathog 10: e1003853. [CrossRef] [PubMed]
    [Google Scholar]
  3. Breitfeld D. , Ohl L. , Kremmer E. , Ellwart J. , Sallusto F. , Lipp M. , Förster R. . ( 2000;). Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. . J Exp Med 192: 1545–1552.[PubMed] [CrossRef]
    [Google Scholar]
  4. Butler N. S. , Kulu D. I . ( 2015;). The regulation of T follicular helper responses during infection. . Curr Opin in Immunol 34: 68–74.[CrossRef]
    [Google Scholar]
  5. Chevalier N. , Jarrossay D. , Ho E. , Avery D. T. , Ma C. S. , Yu D. , Sallusto F. , Tangye S. G. , Mackay C. R. . ( 2011;). CXCR5 expressing human central memory CD4 T cells and their relevance for humoral immune responses. . J Immunol 186: 5556–5568. [CrossRef] [PubMed]
    [Google Scholar]
  6. Crotty S. . ( 2014;). T follicular helper cell differentiation, function, and roles in disease. . Immunity 41: 529–542. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cubas R. A. , Mudd J. C. , Savoye A. L. , Perreau M. , van Grevenynghe J. , Metcalf T. , Connick E. , Meditz A. , Freeman G. J. et al. ( 2013;). Inadequate T follicular cell help impairs B cell immunity during HIV infection. . Nat Med 19: 494–499. [CrossRef] [PubMed]
    [Google Scholar]
  8. Förster R. , Emrich T. , Kremmer E. , Lipp M. . ( 1994;). Expression of the G-protein-coupled receptor BLR1 defines mature, recirculating B cells and a subset of T-helper memory cells. . Blood 84: 830–840.[PubMed]
    [Google Scholar]
  9. Furione M. , Rognoni V. , Cabano E. , Baldanti F. . ( 2012;). Kinetics of human cytomegalovirus (HCMV) DNAemia in transplanted patients expressed in international units as determined with the Abbott RealTime CMV assay and an in-house assay. . J Clin Virol 55: 317–322. [CrossRef] [PubMed]
    [Google Scholar]
  10. Furione M. , Rognoni V. , Sarasini A. , Zavattoni M. , Lilleri D. , Gerna G. , Revello M. G. . ( 2013;). Slow increase in IgG avidity correlates with prevention of human cytomegalovirus transmission to the fetus. . J Med Virol 85: 1960–1967. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gabanti E. , Bruno F. , Lilleri D. , Fornara C. , Zelini P. , Cane I. , Migotto C. , Sarchi E. , Furione M. et al. ( 2014;). Human cytomegalovirus (HCMV)-specific memory CD4+ and CD8+ T cells are both required for prevention of HCMV disease in seropositive solid-organ transplant recipients. . PLoS One 9: e106044. [CrossRef]
    [Google Scholar]
  12. Geiger R. , Duhen T. , Lanzavecchia A. , Sallusto F. . ( 2009;). Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. . J Exp Med 206: 1525–1534. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gerna G. , Baldanti F. , Torsellini M. , Minoli L. , Viganò M. , Oggionnis T. , Rampino T. , Castiglioni B. , Goglio A. et al. ( 2007;). Evaluation of cytomegalovirus DNAaemia versus pp65- antigenaemia cutoff for guiding preemptive therapy in transplant recipients: a randomized study. . Antivir Ther 12: 63–72.[PubMed]
    [Google Scholar]
  14. Gerna G. , Sarasini A. , Patrone M. , Percivalle E. , Fiorina L. , Campanini G. , Gallina A. , Baldanti F. , Revello M. G. . ( 2008;). Human cytomegalovirus serum neutralizing antibodies block virus infection of endothelial/epithelial cells, but not fibroblasts, early during primary infection. . J Gen Virol 89: 853–865. [CrossRef] [PubMed]
    [Google Scholar]
  15. Gerna G. , Lilleri D. , Chiesa A. , Zelini P. , Furione M. , Comolli G. , Pellegrini C. , Sarchi E. , Migotto C. et al. ( 2011;). Virologic and immunologic monitoring of cytomegalovirus to guide preemptive therapy in solid-organ transplantation. . Am J Transplant 11: 2463–2471. [CrossRef] [PubMed]
    [Google Scholar]
  16. Gerna G. , Lilleri D. , Fornara C. , Bruno F. , Gabanti E. , Cane I. , Furione M. , Revello M. G. , Fornara C. , Bruno C. . ( 2015;). Differential kinetics of human cytomegalovirus load and antibody responses in primary infection of the immunocompetent and immunocompromised host. . J Gen Virol 96: 360–369. [CrossRef] [PubMed]
    [Google Scholar]
  17. He J. , Tsai L. M. , Leong Y. A. , Hu X. , Ma C. S. , Chevalier N. , Sun X. , Vandenberg K. , Rockman S. et al. ( 2013;). Circulating precursor CCR7(lo)PD-1(hi) CXCR5+ CD4+ T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. . Immunity 39: 770–781. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kabanova A. , Perez L. , Lilleri D. , Marcandalli J. , Agatic G. , Becattini S. , Preite S. , Fuschillo D. , Percivalle E. et al. ( 2014;). Antibody-driven design of a human cytomegalovirus gHgLpUL128L subunit vaccine that selectively elicits potent neutralizing antibodies. . Proc Natl Acad Sci U S A 111: 17965–17970. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kim C. H. , Rott L. S. , Clark-Lewis I. , Campbell D. J. , Wu L. , Butcher E. C. . ( 2001;). Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. . J Exp Med 193: 1373–1381.[PubMed] [CrossRef]
    [Google Scholar]
  20. Leddon S. A. , Richards K. A. , Treanor J. J. , Sant A. J. . ( 2015;). Abundance and specificity of influenza reactive circulating memory follicular helper and non-follicular helper CD4 T cells in healthy adults. . Immunology 146: 157–162. [CrossRef] [PubMed]
    [Google Scholar]
  21. Lilleri D. , Baldanti F. , Gatti M. , Rovida F. , Dossena L. , De Grazia S. , Torsellini M. , Gerna G. . ( 2004;). Clinically-based determination of safe DNAemia cutoff levels for preemptive therapy of human cytomegalovirus infections in solid organ and hematopoietic stem cell transplant recipients. . J Med Virol 73: 412–418. [CrossRef] [PubMed]
    [Google Scholar]
  22. Lilleri D. , Kabanova A. , Lanzavecchia A. , Gerna G. . ( 2012;). Antibodies against neutralization epitopes of human cytomegalovirus gH/gL/pUL128-130-131 complex and virus spreading may correlate with virus control in vivo. . J Clin Immunol 32: 1324–1331. [CrossRef] [PubMed]
    [Google Scholar]
  23. Lilleri D. , Kabanova A. , Revello M. G. , Percivalle E. , Sarasini A. , Genini E. , Sallusto F. , Lanzavecchia A. , Corti D. et al. ( 2013;). Fetal human cytomegalovirus transmission correlates with delayed maternal antibodies to gH/gL/pUL128-130-131 complex during primary infection. . PLoS One 8: e59863. [CrossRef] [PubMed]
    [Google Scholar]
  24. Lindqvist M. , van Lunzen J. , Soghoian D. Z. , Kuhl B. D. , Ranasinghe S. , Kranias G. , Flanders M. D. , Cutler S. , Yudanin N. et al. ( 2012;). Expansion of HIV-specific T follicular helper cells in chronic HIV infection. . J Clin Invest 122: 3271–3280. [CrossRef] [PubMed]
    [Google Scholar]
  25. Locci M. , Havenar-Daughton C. , Landais E. , Wu J. , Kroenke M. A. , Arlehamn C. L. , Su L. F. , Cubas R. , Davis M. M. et al. ( 2013;). Human circulating PD-1+CXCR3-CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. . Immunity 39: 758–769. [CrossRef] [PubMed]
    [Google Scholar]
  26. Lozza L. , Lilleri D. , Percivalle E. , Fornara C. , Comolli G. , Revello M. G. , Gerna G. . ( 2005;). Simultaneous quantification of human cytomegalovirus (HCMV)-specific CD4+ and CD8+ T cells by a novel method using monocyte-derived HCMV-infected immature dendritic cells. . Eur J Immunol 35: 1795–1804. [CrossRef] [PubMed]
    [Google Scholar]
  27. Morita R. , Schmitt N. , Bentebibel S. E. , Ranganathan R. , Bourdery L. , Zurawski G. , Foucat E. , Dullaers M. , Oh S. et al. ( 2011;). Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. . Immunity 34: 108–121. [CrossRef] [PubMed]
    [Google Scholar]
  28. Perreau M. , Savoye A. L. , De Crignis E. , Corpataux J. M. , Cubas R. , Haddad E. K. , De Leval L. , Graziosi C. , Pantaleo G. . ( 2013;). Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. . J Exp Med 210: 143–156. [CrossRef] [PubMed]
    [Google Scholar]
  29. Recher M. , Lang K. S. , Hunziker L. , Freigang S. , Eschli B. , Harris N. L. , Navarini A. , Senn B. M. , Fink K. et al. ( 2004;). Deliberate removal of T cell help improves virus-neutralizing antibody production. . Nat Immunol 5: 934–942. [CrossRef] [PubMed]
    [Google Scholar]
  30. Revello M. G. , Genini E. , Gorini G. , Klersy C. , Piralla A. , Gerna G. . ( 2010;). Comparative evaluation of eight commercial human cytomegalovirus IgG avidity assays. . J Clin Virol 48: 255–259. [CrossRef] [PubMed]
    [Google Scholar]
  31. Revello M. G. , Fabbri E. , Furione M. , Zavattoni M. , Lilleri D. , Tassis B. , Quarenghi A. , Cena C. , Arossa A. et al. ( 2011;). Role of prenatal diagnosis and counseling in the management of 735 pregnancies complicated by primary human cytomegalovirus infection: a 20-year experience. . J Clin Virol 50: 303–307. [CrossRef] [PubMed]
    [Google Scholar]
  32. Sage P. T. , Alvarez D. , Godec J. , von Andrian U. H. , Sharpe A. H. . ( 2014;). Circulating T follicular regulatory and helper cells have memory-like properties. . J Clin Invest 124: 5191–5204. [CrossRef] [PubMed]
    [Google Scholar]
  33. Schaerli P. , Willimann K. , Lang A. B. , Lipp M. , Loetscher P. , Moser B. . ( 2000;). CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. . J Exp Med 192: 1553–1562.[PubMed] [CrossRef]
    [Google Scholar]
  34. Schmitt N. , Bentebibel S. E. , Ueno H. . ( 2014;). Phenotype and functions of memory Tfh cells in human blood. . Trends Immunol 35: 436–442. [CrossRef] [PubMed]
    [Google Scholar]
  35. Schultz B. T. , Teigler J. E. , Pissani F. , Oster A. F. , Kranias G. , Alter G. , Marovich M. , Eller M. A. , Dittmer U. et al. ( 2016;). Circulating HIV-specific interleukin-21+ CD4+ T cells represent peripheral Tfh cells with antigen-dependent helper functions. . Immunity 44: 167–178. [CrossRef] [PubMed]
    [Google Scholar]
  36. Ueno H. , Banchereau J. , Vinuesa C. G. . ( 2015;). Pathophysiology of T follicular helper cells in humans and mice. . Nat Immunol 16: 142–152. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000488
Loading
/content/journal/jgv/10.1099/jgv.0.000488
Loading

Data & Media loading...

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error