1887

Abstract

Picornaviruses form replication complexes in association with membranes in structures called replication organelles. Common themes to emerge from studies of picornavirus replication are the need for cholesterol and phosphatidylinositol 4-phosphate (PI4P). In infected cells, type III phosphatidylinositol 4-kinases (PI4KIIIs) generate elevated levels of PI4P, which is then exchanged for cholesterol at replication organelles. For the enteroviruses, replication organelles form at Golgi membranes in a process that utilizes PI4KIIIβ. Other picornaviruses, for example the cardioviruses, are believed to initiate replication at the endoplasmic reticulum and subvert PI4KIIIα to generate PI4P. Here we investigated the role of PI4KIII in foot-and-mouth disease virus (FMDV) replication. Our results showed that, in contrast to the enteroviruses and the cardioviruses, FMDV replication does not require PI4KIII (PI4KIIIα and PI4KIIIβ), and PI4P levels do not increase in FMDV-infected cells and PI4P is not seen at replication organelles. These results point to a unique requirement towards lipids at the FMDV replication membranes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000485
2016-08-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/8/1841.html?itemId=/content/journal/jgv/10.1099/jgv.0.000485&mimeType=html&fmt=ahah

References

  1. Agol V. I., Paul A. V., Wimmer E. 1999; Paradoxes of the replication of picornaviral genomes. Virus Res 62:129–147[PubMed] [CrossRef]
    [Google Scholar]
  2. Albulescu L., Strating J. R., Thibaut H. J., van der Linden L., Shair M. D., Neyts J., van Kuppeveld F. J. 2015a; Broad-range inhibition of enterovirus replication by OSW-1, a natural compound targeting OSBP. Antiviral Res 117:110–114 [View Article]
    [Google Scholar]
  3. Albulescu L., Wubbolts R., van Kuppeveld F. J., Strating J. R. 2015b; Cholesterol shuttling is important for RNA replication of coxsackievirus B3 and encephalomyocarditis virus. Cell Microbiol 17:1144–1156 [CrossRef]
    [Google Scholar]
  4. Arita M. 2014; Phosphatidylinositol-4 kinase III beta and oxysterol-binding protein accumulate unesterified cholesterol on poliovirus-induced membrane structure. Microbiol Immunol 58:239–256 [View Article][PubMed]
    [Google Scholar]
  5. Arita M., Kojima H., Nagano T., Okabe T., Wakita T., Shimizu H. 2013; Oxysterol-binding protein family I is the target of minor enviroxime-like compounds. J Virol 87:4252–4260 [View Article][PubMed]
    [Google Scholar]
  6. Balla A., Tuymetova G., Toth B., Szentpetery Z., Zhao X., Knight Z. A., Shokat K., Steinbach P. J., Balla T. 2008; Design of drug-resistant alleles of type-III phosphatidylinositol 4-kinases using mutagenesis and molecular modeling. Biochemistry 47:1599–1607 [View Article][PubMed]
    [Google Scholar]
  7. Balla T. 2013; Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93:1019–1137 [View Article][PubMed]
    [Google Scholar]
  8. Belov G. A., Sztul E. 2014; Rewiring of cellular membrane homeostasis by picornaviruses. J Virol 88:9478–9489 [View Article][PubMed]
    [Google Scholar]
  9. Belov G. A., van Kuppeveld F. J. 2012; (+)RNA viruses rewire cellular pathways to build replication organelles. Curr Opin Virol 2:740–747 [View Article][PubMed]
    [Google Scholar]
  10. Belov G. A. 2014; Modulation of lipid synthesis and trafficking pathways by picornaviruses. Curr Opin Virol 9:19–23 [View Article][PubMed]
    [Google Scholar]
  11. Belov G. A., Feng Q., Nikovics K., Jackson C. L., Ehrenfeld E. 2008; A critical role of a cellular membrane traffic protein in poliovirus RNA replication. PLoS Pathog 4:e1000216 [View Article][PubMed]
    [Google Scholar]
  12. Berryman S., Clark S., Monaghan P., Jackson T. 2005; Early events in integrin alphavbeta6-mediated cell entry of foot-and-mouth disease virus. J Virol 79:8519–8534 [View Article][PubMed]
    [Google Scholar]
  13. Bianco A., Reghellin V., Donnici L., Fenu S., Alvarez R., Baruffa C., Peri F., Pagani M., Abrignani S. et al. 2012; Metabolism of phosphatidylinositol 4-kinase IIIα-dependent PI4P is subverted by HCV and is targeted by a 4-anilino quinazoline with antiviral activity. PLoS Pathog 8:e1002576 [View Article][PubMed]
    [Google Scholar]
  14. Civra A., Cagno V., Donalisio M., Biasi F., Leonarduzzi G., Poli G., Lembo D. 2014; Inhibition of pathogenic non-enveloped viruses by 25-hydroxycholesterol and 27-hydroxycholesterol. Sci Rep 4:7487 [View Article][PubMed]
    [Google Scholar]
  15. Cuconati A., Molla A., Wimmer E. 1998; Brefeldin A inhibits cell-free, de novo synthesis of poliovirus. J Virol 72:6456–6464[PubMed]
    [Google Scholar]
  16. Delang L., Paeshuyse J., Neyts J. 2012; The role of phosphatidylinositol 4-kinases and phosphatidylinositol 4-phosphate during viral replication. Biochem Pharmacol 84:1400–1408 [View Article][PubMed]
    [Google Scholar]
  17. Doedens J., Maynell L. A., Klymkowsky M. W., Kirkegaard K. 1994; Secretory pathway function, but not cytoskeletal integrity, is required in poliovirus infection. Arch Virol Suppl 9:159–172[PubMed]
    [Google Scholar]
  18. Dorobantu C. M., Albulescu L., Harak C., Feng Q., van Kampen M., Strating J. R., Gorbalenya A. E., Lohmann V., van der Schaar H. M., van Kuppeveld F. J. 2015; Modulation of the host lipid landscape to promote RNA virus replication: the picornavirus encephalomyocarditis virus converges on the pathway used by hepatitis C virus. PLoS Pathog 11:e1005185 [View Article][PubMed]
    [Google Scholar]
  19. Ellard F. M., Drew J., Blakemore W. E., Stuart D. I., King A. M. 1999; Evidence for the role of His-142 of protein 1C in the acid-induced disassembly of foot-and-mouth disease virus capsids. J Gen Virol 80:1911–1919 [View Article][PubMed]
    [Google Scholar]
  20. Esser-Nobis K., Harak C., Schult P., Kusov Y., Lohmann V. 2015; Novel perspectives for hepatitis A virus therapy revealed by comparative analysis of hepatitis C virus and hepatitis A virus RNA replication. Hepatology 62:397–408 [View Article][PubMed]
    [Google Scholar]
  21. Gazina E. V., Mackenzie J. M., Gorrell R. J., Anderson D. A. 2002; Differential requirements for COPI coats in formation of replication complexes among three genera of Picornaviridae. J Virol 76:11113–11122[PubMed] [CrossRef]
    [Google Scholar]
  22. Godi A., Pertile P., Meyers R., Marra P., Di Tullio G., Iurisci C., Luini A., Corda D., De Matteis M. A. 1999; ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat Cell Biol 1:280–287 [View Article][PubMed]
    [Google Scholar]
  23. Greninger A. L., Knudsen G. M., Betegon M., Burlingame A. L., Derisi J. L. 2012; The 3A protein from multiple picornaviruses utilizes the Golgi adaptor protein ACBD3 to recruit PI4KIIIβ. J Virol 86:3605–3616 [View Article][PubMed]
    [Google Scholar]
  24. Hagemeijer M. C., Vonk A. M., Monastyrska I., Rottier P. J., de Haan C. A. 2012; Visualizing coronavirus RNA synthesis in time by using click chemistry. J Virol 86:5808–5816 [View Article][PubMed]
    [Google Scholar]
  25. Hsu N. Y., Ilnytska O., Belov G., Santiana M., Chen Y. H., Takvorian P. M., Pau C., van der Schaar H., Kaushik-Basu N. et al. 2010; Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell 141:799–811 [View Article][PubMed]
    [Google Scholar]
  26. Ilnytska O., Santiana M., Hsu N. Y., Du W. L., Chen Y. H., Viktorova E. G., Belov G., Brinker A., Storch J. et al. 2013; Enteroviruses harness the cellular endocytic machinery to remodel the host cell cholesterol landscape for effective viral replication. Cell Host Microbe 14:281–293 [View Article][PubMed]
    [Google Scholar]
  27. Irurzun A., Perez L., Carrasco L. 1992; Involvement of membrane traffic in the replication of poliovirus genomes: effects of brefeldin A. Virology 191:166–175 [View Article][PubMed]
    [Google Scholar]
  28. Ishikawa-Sasaki K., Sasaki J., Taniguchi K. 2014; A complex comprising phosphatidylinositol 4-kinase IIIβ, ACBD3, and Aichi virus proteins enhances phosphatidylinositol 4-phosphate synthesis and is critical for formation of the viral replication complex. J Virol 88:6586–6598 [View Article][PubMed]
    [Google Scholar]
  29. Jackson T., Ellard F. M., Ghazaleh R. A., Brookes S. M., Blakemore W. E., Corteyn A. H., Stuart D. I., Newman J. W., King A. M. 1996; Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J Virol 70:5282–5287[PubMed]
    [Google Scholar]
  30. Jackson T., Sheppard D., Denyer M., Blakemore W., King A. M. 2000; The epithelial integrin alphavbeta6 is a receptor for foot-and-mouth disease virus. J Virol 74:4949–4956[PubMed] [CrossRef]
    [Google Scholar]
  31. Knight-Jones T. J., Rushton J. 2013; The economic impacts of foot and mouth disease – what are they, how big are they and where do they occur?. Prev Vet Med 112:161–173 [View Article][PubMed]
    [Google Scholar]
  32. Knoops K., Kikkert M., Worm S. H., Zevenhoven-Dobbe J. C., van der Meer Y., Koster A. J., Mommaas A. M., Snijder E. J. 2008; SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 6:e226 [View Article][PubMed]
    [Google Scholar]
  33. Knowles N. J., Hovi T., Hyypiä T., King A. M. Q., Lindberg A. M., Pallansch M. A., Palmenberg A. C., Simmonds P., Skern T. et al. 2012; Picornaviridae. In Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses , pp. 855–880 Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. San Diego: Elsevier;
    [Google Scholar]
  34. Knox C., Moffat K., Ali S., Ryan M., Wileman T. 2005; Foot-and-mouth disease virus replication sites form next to the nucleus and close to the Golgi apparatus, but exclude marker proteins associated with host membrane compartments. J Gen Virol 86:687–696 [View Article][PubMed]
    [Google Scholar]
  35. Lanke K. H., van der Schaar H. M., Belov G. A., Feng Q., Duijsings D., Jackson C. L., Ehrenfeld E., van Kuppeveld F. J. 2009; GBF1, a guanine nucleotide exchange factor for Arf, is crucial for coxsackievirus B3 RNA replication. J Virol 83:11940–11949 [View Article][PubMed]
    [Google Scholar]
  36. Martín-Acebes M. A., González-Magaldi M., Rosas M. F., Borrego B., Brocchi E., Armas-Portela R., Sobrino F. 2008; Subcellular distribution of swine vesicular disease virus proteins and alterations induced in infected cells: a comparative study with foot-and-mouth disease virus and vesicular stomatitis virus. Virology 374:432–443 [View Article][PubMed]
    [Google Scholar]
  37. Maynell L. A., Kirkegaard K., Klymkowsky M. W. 1992; Inhibition of poliovirus RNA synthesis by brefeldin A. J Virol 66:1985–1994[PubMed]
    [Google Scholar]
  38. Mesmin B., Bigay J., Moser von Filseck J., Lacas-Gervais S., Drin G., Antonny B. 2013; A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155:830–843 [View Article][PubMed]
    [Google Scholar]
  39. Midgley R., Moffat K., Berryman S., Hawes P., Simpson J., Fullen D., Stephens D. J., Burman A., Jackson T. 2013; A role for endoplasmic reticulum exit sites in foot-and-mouth disease virus infection. J Gen Virol 94:2636–2646 [View Article][PubMed]
    [Google Scholar]
  40. Moffat K., Howell G., Knox C., Belsham G. J., Monaghan P., Ryan M. D., Wileman T. 2005; Effects of foot-and-mouth disease virus nonstructural proteins on the structure and function of the early secretory pathway: 2BC but not 3A blocks endoplasmic reticulum-to-Golgi transport. J Virol 79:4382–4395 [View Article][PubMed]
    [Google Scholar]
  41. Moffat K., Knox C., Howell G., Clark S. J., Yang H., Belsham G. J., Ryan M., Wileman T. 2007; Inhibition of the secretory pathway by foot-and-mouth disease virus 2BC protein is reproduced by coexpression of 2B with 2C, and the site of inhibition is determined by the subcellular location of 2C. J Virol 81:1129–1139 [View Article][PubMed]
    [Google Scholar]
  42. Monaghan P., Cook H., Jackson T., Ryan M., Wileman T. 2004; The ultrastructure of the developing replication site in foot-and-mouth disease virus-infected BHK-38 cells. J Gen Virol 85:933–946 [View Article][PubMed]
    [Google Scholar]
  43. O'Donnell V. K., Pacheco J. M., Henry T. M., Mason P. W. 2001; Subcellular distribution of the foot-and-mouth disease virus 3A protein in cells infected with viruses encoding wild-type and bovine-attenuated forms of 3A. Virology 287:151–162 [View Article][PubMed]
    [Google Scholar]
  44. Phillips M. J., Voeltz G. K. 2016; Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol 17:69–82 [View Article][PubMed]
    [Google Scholar]
  45. Reiss S., Harak C., Romero-Brey I., Radujkovic D., Klein R., Ruggieri A., Rebhan I., Bartenschlager R., Lohmann V. 2013; The lipid kinase phosphatidylinositol-4 kinase III alpha regulates the phosphorylation status of hepatitis C virus NS5A. PLoS Pathog 9:e1003359 [View Article][PubMed]
    [Google Scholar]
  46. Richards A. L., Soares-Martins J. A., Riddell G. T., Jackson W. T. 2014; Generation of unique poliovirus RNA replication organelles. MBio 5:e0083300813 [View Article][PubMed]
    [Google Scholar]
  47. Rodríguez Pulido M., Sobrino F., Borrego B., Sáiz M. 2009; Attenuated foot-and-mouth disease virus RNA carrying a deletion in the 3' noncoding region can elicit immunity in swine. J Virol 83:3475–3485 [View Article][PubMed]
    [Google Scholar]
  48. Roulin P. S., Lötzerich M., Torta F., Tanner L. B., van Kuppeveld F. J., Wenk M. R., Greber U. F. 2014; Rhinovirus uses a phosphatidylinositol 4-phosphate/cholesterol counter-current for the formation of replication compartments at the ER-Golgi interface. Cell Host & Microbe 16:677–690 [View Article][PubMed]
    [Google Scholar]
  49. Sasaki J., Ishikawa K., Arita M., Taniguchi K. 2012; ACBD3-mediated recruitment of PI4KB to picornavirus RNA replication sites. EMBO J 31:754–766 [View Article][PubMed]
    [Google Scholar]
  50. Spickler C., Lippens J., Laberge M. K., Desmeules S., Bellavance E., Garneau M., Guo T., Hucke O., Leyssen P. et al. 2013; Phosphatidylinositol 4-kinase III beta is essential for replication of human rhinovirus and its inhibition causes a lethal phenotype in vivo . Antimicrob Agents Chemother 57:3358–3368 [View Article]
    [Google Scholar]
  51. Strating J. R., van der Linden L., Albulescu L., Bigay J., Arita M., Delang L., Leyssen P., van der Schaar H. M., Lanke K. H. et al. 2015; Itraconazole inhibits enterovirus replication by targeting the oxysterol-binding protein. Cell Rep 10:600–615 [View Article][PubMed]
    [Google Scholar]
  52. van der Schaar H. M., Leyssen P., Thibaut H. J., de Palma A., van der Linden L., Lanke K. H., Lacroix C., Verbeken E., Conrath K. et al. 2013; A novel, broad-spectrum inhibitor of enterovirus replication that targets host cell factor phosphatidylinositol 4-kinase IIIbeta. Antimicrob Agents Chemother 57:4971–4981 [View Article]
    [Google Scholar]
  53. van der Schaar H. M., van der Linden L., Lanke K. H., Strating J. R., Pürstinger G., de Vries E., de Haan C. A., Neyts J., van Kuppeveld F. J. 2012; Coxsackievirus mutants that can bypass host factor PI4KIIIβ and the need for high levels of PI4P lipids for replication. Cell Res 22:1576–1592 [View Article][PubMed]
    [Google Scholar]
  54. Wessels E., Duijsings D., Niu T. K., Neumann S., Oorschot V. M., de Lange F., Lanke K. H., Klumperman J., Henke A. et al. 2006; A viral protein that blocks Arf1-mediated COP-I assembly by inhibiting the guanine nucleotide exchange factor GBF1. Dev Cell 11:191–201 [View Article][PubMed]
    [Google Scholar]
  55. Zhou Z., Mogensen M. M., Powell P. P., Curry S., Wileman T. 2013; Foot-and-mouth disease virus 3C protease induces fragmentation of the Golgi compartment and blocks intra-Golgi transport. J Virol 87:11721–11729 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000485
Loading
/content/journal/jgv/10.1099/jgv.0.000485
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error