1887

Abstract

Picornaviruses form replication complexes in association with membranes in structures called replication organelles. Common themes to emerge from studies of picornavirus replication are the need for cholesterol and phosphatidylinositol 4-phosphate (PI4P). In infected cells, type III phosphatidylinositol 4-kinases (PI4KIIIs) generate elevated levels of PI4P, which is then exchanged for cholesterol at replication organelles. For the enteroviruses, replication organelles form at Golgi membranes in a process that utilizes PI4KIIIβ. Other picornaviruses, for example the cardioviruses, are believed to initiate replication at the endoplasmic reticulum and subvert PI4KIIIα to generate PI4P. Here we investigated the role of PI4KIII in foot-and-mouth disease virus (FMDV) replication. Our results showed that, in contrast to the enteroviruses and the cardioviruses, FMDV replication does not require PI4KIII (PI4KIIIα and PI4KIIIβ), and PI4P levels do not increase in FMDV-infected cells and PI4P is not seen at replication organelles. These results point to a unique requirement towards lipids at the FMDV replication membranes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000485
2016-08-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/8/1841.html?itemId=/content/journal/jgv/10.1099/jgv.0.000485&mimeType=html&fmt=ahah

References

  1. Agol V. I., Paul A. V., Wimmer E.. 1999; Paradoxes of the replication of picornaviral genomes. Virus Res62:129–147[PubMed][CrossRef]
    [Google Scholar]
  2. Albulescu L., Strating J. R., Thibaut H. J., van der Linden L., Shair M. D., Neyts J., van Kuppeveld F. J.. 2015a; Broad-range inhibition of enterovirus replication by OSW-1, a natural compound targeting OSBP. Antiviral Res117:110–114 [CrossRef]
    [Google Scholar]
  3. Albulescu L., Wubbolts R., van Kuppeveld F. J., Strating J. R.. 2015b; Cholesterol shuttling is important for RNA replication of coxsackievirus B3 and encephalomyocarditis virus. Cell Microbiol17:1144–1156[CrossRef]
    [Google Scholar]
  4. Arita M.. 2014; Phosphatidylinositol-4 kinase III beta and oxysterol-binding protein accumulate unesterified cholesterol on poliovirus-induced membrane structure. Microbiol Immunol58:239–256 [CrossRef][PubMed]
    [Google Scholar]
  5. Arita M., Kojima H., Nagano T., Okabe T., Wakita T., Shimizu H.. 2013; Oxysterol-binding protein family I is the target of minor enviroxime-like compounds. J Virol87:4252–4260 [CrossRef][PubMed]
    [Google Scholar]
  6. Balla A., Tuymetova G., Toth B., Szentpetery Z., Zhao X., Knight Z. A., Shokat K., Steinbach P. J., Balla T.. 2008; Design of drug-resistant alleles of type-III phosphatidylinositol 4-kinases using mutagenesis and molecular modeling. Biochemistry47:1599–1607 [CrossRef][PubMed]
    [Google Scholar]
  7. Balla T.. 2013; Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev93:1019–1137 [CrossRef][PubMed]
    [Google Scholar]
  8. Belov G. A., Sztul E.. 2014; Rewiring of cellular membrane homeostasis by picornaviruses. J Virol88:9478–9489 [CrossRef][PubMed]
    [Google Scholar]
  9. Belov G. A., van Kuppeveld F. J.. 2012; (+)RNA viruses rewire cellular pathways to build replication organelles. Curr Opin Virol2:740–747 [CrossRef][PubMed]
    [Google Scholar]
  10. Belov G. A.. 2014; Modulation of lipid synthesis and trafficking pathways by picornaviruses. Curr Opin Virol9:19–23 [CrossRef][PubMed]
    [Google Scholar]
  11. Belov G. A., Feng Q., Nikovics K., Jackson C. L., Ehrenfeld E.. 2008; A critical role of a cellular membrane traffic protein in poliovirus RNA replication. PLoS Pathog4:e1000216 [CrossRef][PubMed]
    [Google Scholar]
  12. Berryman S., Clark S., Monaghan P., Jackson T.. 2005; Early events in integrin alphavbeta6-mediated cell entry of foot-and-mouth disease virus. J Virol79:8519–8534 [CrossRef][PubMed]
    [Google Scholar]
  13. Bianco A., Reghellin V., Donnici L., Fenu S., Alvarez R., Baruffa C., Peri F., Pagani M., Abrignani S. et al. 2012; Metabolism of phosphatidylinositol 4-kinase IIIα-dependent PI4P is subverted by HCV and is targeted by a 4-anilino quinazoline with antiviral activity. PLoS Pathog8:e1002576 [CrossRef][PubMed]
    [Google Scholar]
  14. Civra A., Cagno V., Donalisio M., Biasi F., Leonarduzzi G., Poli G., Lembo D.. 2014; Inhibition of pathogenic non-enveloped viruses by 25-hydroxycholesterol and 27-hydroxycholesterol. Sci Rep4:7487 [CrossRef][PubMed]
    [Google Scholar]
  15. Cuconati A., Molla A., Wimmer E.. 1998; Brefeldin A inhibits cell-free, de novo synthesis of poliovirus. J Virol72:6456–6464[PubMed]
    [Google Scholar]
  16. Delang L., Paeshuyse J., Neyts J.. 2012; The role of phosphatidylinositol 4-kinases and phosphatidylinositol 4-phosphate during viral replication. Biochem Pharmacol84:1400–1408 [CrossRef][PubMed]
    [Google Scholar]
  17. Doedens J., Maynell L. A., Klymkowsky M. W., Kirkegaard K.. 1994; Secretory pathway function, but not cytoskeletal integrity, is required in poliovirus infection. Arch Virol Suppl9:159–172[PubMed]
    [Google Scholar]
  18. Dorobantu C. M., Albulescu L., Harak C., Feng Q., van Kampen M., Strating J. R., Gorbalenya A. E., Lohmann V., van der Schaar H. M., van Kuppeveld F. J.. 2015; Modulation of the host lipid landscape to promote RNA virus replication: the picornavirus encephalomyocarditis virus converges on the pathway used by hepatitis C virus. PLoS Pathog11:e1005185 [CrossRef][PubMed]
    [Google Scholar]
  19. Ellard F. M., Drew J., Blakemore W. E., Stuart D. I., King A. M.. 1999; Evidence for the role of His-142 of protein 1C in the acid-induced disassembly of foot-and-mouth disease virus capsids. J Gen Virol80:1911–1919 [CrossRef][PubMed]
    [Google Scholar]
  20. Esser-Nobis K., Harak C., Schult P., Kusov Y., Lohmann V.. 2015; Novel perspectives for hepatitis A virus therapy revealed by comparative analysis of hepatitis C virus and hepatitis A virus RNA replication. Hepatology62:397–408 [CrossRef][PubMed]
    [Google Scholar]
  21. Gazina E. V., Mackenzie J. M., Gorrell R. J., Anderson D. A.. 2002; Differential requirements for COPI coats in formation of replication complexes among three genera of Picornaviridae. J Virol76:11113–11122[PubMed][CrossRef]
    [Google Scholar]
  22. Godi A., Pertile P., Meyers R., Marra P., Di Tullio G., Iurisci C., Luini A., Corda D., De Matteis M. A.. 1999; ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat Cell Biol1:280–287 [CrossRef][PubMed]
    [Google Scholar]
  23. Greninger A. L., Knudsen G. M., Betegon M., Burlingame A. L., Derisi J. L.. 2012; The 3A protein from multiple picornaviruses utilizes the Golgi adaptor protein ACBD3 to recruit PI4KIIIβ. J Virol86:3605–3616 [CrossRef][PubMed]
    [Google Scholar]
  24. Hagemeijer M. C., Vonk A. M., Monastyrska I., Rottier P. J., de Haan C. A.. 2012; Visualizing coronavirus RNA synthesis in time by using click chemistry. J Virol86:5808–5816 [CrossRef][PubMed]
    [Google Scholar]
  25. Hsu N. Y., Ilnytska O., Belov G., Santiana M., Chen Y. H., Takvorian P. M., Pau C., van der Schaar H., Kaushik-Basu N. et al. 2010; Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell141:799–811 [CrossRef][PubMed]
    [Google Scholar]
  26. Ilnytska O., Santiana M., Hsu N. Y., Du W. L., Chen Y. H., Viktorova E. G., Belov G., Brinker A., Storch J. et al. 2013; Enteroviruses harness the cellular endocytic machinery to remodel the host cell cholesterol landscape for effective viral replication. Cell Host Microbe14:281–293 [CrossRef][PubMed]
    [Google Scholar]
  27. Irurzun A., Perez L., Carrasco L.. 1992; Involvement of membrane traffic in the replication of poliovirus genomes: effects of brefeldin A. Virology191:166–175 [CrossRef][PubMed]
    [Google Scholar]
  28. Ishikawa-Sasaki K., Sasaki J., Taniguchi K.. 2014; A complex comprising phosphatidylinositol 4-kinase IIIβ, ACBD3, and Aichi virus proteins enhances phosphatidylinositol 4-phosphate synthesis and is critical for formation of the viral replication complex. J Virol88:6586–6598 [CrossRef][PubMed]
    [Google Scholar]
  29. Jackson T., Ellard F. M., Ghazaleh R. A., Brookes S. M., Blakemore W. E., Corteyn A. H., Stuart D. I., Newman J. W., King A. M.. 1996; Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J Virol70:5282–5287[PubMed]
    [Google Scholar]
  30. Jackson T., Sheppard D., Denyer M., Blakemore W., King A. M.. 2000; The epithelial integrin alphavbeta6 is a receptor for foot-and-mouth disease virus. J Virol74:4949–4956[PubMed][CrossRef]
    [Google Scholar]
  31. Knight-Jones T. J., Rushton J.. 2013; The economic impacts of foot and mouth disease – what are they, how big are they and where do they occur?. Prev Vet Med112:161–173 [CrossRef][PubMed]
    [Google Scholar]
  32. Knoops K., Kikkert M., Worm S. H., Zevenhoven-Dobbe J. C., van der Meer Y., Koster A. J., Mommaas A. M., Snijder E. J.. 2008; SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol6:e226 [CrossRef][PubMed]
    [Google Scholar]
  33. Knowles N. J., Hovi T., Hyypiä T., King A. M. Q., Lindberg A. M., Pallansch M. A., Palmenberg A. C., Simmonds P., Skern T. et al. 2012; Picornaviridae. In Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses , pp.855–880 Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J.. San Diego: Elsevier;
    [Google Scholar]
  34. Knox C., Moffat K., Ali S., Ryan M., Wileman T.. 2005; Foot-and-mouth disease virus replication sites form next to the nucleus and close to the Golgi apparatus, but exclude marker proteins associated with host membrane compartments. J Gen Virol86:687–696 [CrossRef][PubMed]
    [Google Scholar]
  35. Lanke K. H., van der Schaar H. M., Belov G. A., Feng Q., Duijsings D., Jackson C. L., Ehrenfeld E., van Kuppeveld F. J.. 2009; GBF1, a guanine nucleotide exchange factor for Arf, is crucial for coxsackievirus B3 RNA replication. J Virol83:11940–11949 [CrossRef][PubMed]
    [Google Scholar]
  36. Martín-Acebes M. A., González-Magaldi M., Rosas M. F., Borrego B., Brocchi E., Armas-Portela R., Sobrino F.. 2008; Subcellular distribution of swine vesicular disease virus proteins and alterations induced in infected cells: a comparative study with foot-and-mouth disease virus and vesicular stomatitis virus. Virology374:432–443 [CrossRef][PubMed]
    [Google Scholar]
  37. Maynell L. A., Kirkegaard K., Klymkowsky M. W.. 1992; Inhibition of poliovirus RNA synthesis by brefeldin A. J Virol66:1985–1994[PubMed]
    [Google Scholar]
  38. Mesmin B., Bigay J., Moser von Filseck J., Lacas-Gervais S., Drin G., Antonny B.. 2013; A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell155:830–843 [CrossRef][PubMed]
    [Google Scholar]
  39. Midgley R., Moffat K., Berryman S., Hawes P., Simpson J., Fullen D., Stephens D. J., Burman A., Jackson T.. 2013; A role for endoplasmic reticulum exit sites in foot-and-mouth disease virus infection. J Gen Virol94:2636–2646 [CrossRef][PubMed]
    [Google Scholar]
  40. Moffat K., Howell G., Knox C., Belsham G. J., Monaghan P., Ryan M. D., Wileman T.. 2005; Effects of foot-and-mouth disease virus nonstructural proteins on the structure and function of the early secretory pathway: 2BC but not 3A blocks endoplasmic reticulum-to-Golgi transport. J Virol79:4382–4395 [CrossRef][PubMed]
    [Google Scholar]
  41. Moffat K., Knox C., Howell G., Clark S. J., Yang H., Belsham G. J., Ryan M., Wileman T.. 2007; Inhibition of the secretory pathway by foot-and-mouth disease virus 2BC protein is reproduced by coexpression of 2B with 2C, and the site of inhibition is determined by the subcellular location of 2C. J Virol81:1129–1139 [CrossRef][PubMed]
    [Google Scholar]
  42. Monaghan P., Cook H., Jackson T., Ryan M., Wileman T.. 2004; The ultrastructure of the developing replication site in foot-and-mouth disease virus-infected BHK-38 cells. J Gen Virol85:933–946 [CrossRef][PubMed]
    [Google Scholar]
  43. O'Donnell V. K., Pacheco J. M., Henry T. M., Mason P. W.. 2001; Subcellular distribution of the foot-and-mouth disease virus 3A protein in cells infected with viruses encoding wild-type and bovine-attenuated forms of 3A. Virology287:151–162 [CrossRef][PubMed]
    [Google Scholar]
  44. Phillips M. J., Voeltz G. K.. 2016; Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol17:69–82 [CrossRef][PubMed]
    [Google Scholar]
  45. Reiss S., Harak C., Romero-Brey I., Radujkovic D., Klein R., Ruggieri A., Rebhan I., Bartenschlager R., Lohmann V.. 2013; The lipid kinase phosphatidylinositol-4 kinase III alpha regulates the phosphorylation status of hepatitis C virus NS5A. PLoS Pathog9:e1003359 [CrossRef][PubMed]
    [Google Scholar]
  46. Richards A. L., Soares-Martins J. A., Riddell G. T., Jackson W. T.. 2014; Generation of unique poliovirus RNA replication organelles. MBio5:e0083300813 [CrossRef][PubMed]
    [Google Scholar]
  47. Rodríguez Pulido M., Sobrino F., Borrego B., Sáiz M.. 2009; Attenuated foot-and-mouth disease virus RNA carrying a deletion in the 3' noncoding region can elicit immunity in swine. J Virol83:3475–3485 [CrossRef][PubMed]
    [Google Scholar]
  48. Roulin P. S., Lötzerich M., Torta F., Tanner L. B., van Kuppeveld F. J., Wenk M. R., Greber U. F.. 2014; Rhinovirus uses a phosphatidylinositol 4-phosphate/cholesterol counter-current for the formation of replication compartments at the ER-Golgi interface. Cell Host & Microbe16:677–690 [CrossRef][PubMed]
    [Google Scholar]
  49. Sasaki J., Ishikawa K., Arita M., Taniguchi K.. 2012; ACBD3-mediated recruitment of PI4KB to picornavirus RNA replication sites. EMBO J31:754–766 [CrossRef][PubMed]
    [Google Scholar]
  50. Spickler C., Lippens J., Laberge M. K., Desmeules S., Bellavance E., Garneau M., Guo T., Hucke O., Leyssen P. et al. 2013; Phosphatidylinositol 4-kinase III beta is essential for replication of human rhinovirus and its inhibition causes a lethal phenotype in vivo . Antimicrob Agents Chemother57:3358–3368 [CrossRef]
    [Google Scholar]
  51. Strating J. R., van der Linden L., Albulescu L., Bigay J., Arita M., Delang L., Leyssen P., van der Schaar H. M., Lanke K. H. et al. 2015; Itraconazole inhibits enterovirus replication by targeting the oxysterol-binding protein. Cell Rep10:600–615 [CrossRef][PubMed]
    [Google Scholar]
  52. van der Schaar H. M., Leyssen P., Thibaut H. J., de Palma A., van der Linden L., Lanke K. H., Lacroix C., Verbeken E., Conrath K. et al. 2013; A novel, broad-spectrum inhibitor of enterovirus replication that targets host cell factor phosphatidylinositol 4-kinase IIIbeta. Antimicrob Agents Chemother57:4971–4981 [CrossRef]
    [Google Scholar]
  53. van der Schaar H. M., van der Linden L., Lanke K. H., Strating J. R., Pürstinger G., de Vries E., de Haan C. A., Neyts J., van Kuppeveld F. J.. 2012; Coxsackievirus mutants that can bypass host factor PI4KIIIβ and the need for high levels of PI4P lipids for replication. Cell Res22:1576–1592 [CrossRef][PubMed]
    [Google Scholar]
  54. Wessels E., Duijsings D., Niu T. K., Neumann S., Oorschot V. M., de Lange F., Lanke K. H., Klumperman J., Henke A. et al. 2006; A viral protein that blocks Arf1-mediated COP-I assembly by inhibiting the guanine nucleotide exchange factor GBF1. Dev Cell11:191–201 [CrossRef][PubMed]
    [Google Scholar]
  55. Zhou Z., Mogensen M. M., Powell P. P., Curry S., Wileman T.. 2013; Foot-and-mouth disease virus 3C protease induces fragmentation of the Golgi compartment and blocks intra-Golgi transport. J Virol87:11721–11729 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000485
Loading
/content/journal/jgv/10.1099/jgv.0.000485
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error