1887

Abstract

Dengue virus infects immune cells, including monocytes, macrophages and dendritic cells (DC). We compared virus infectivity in macrophages and DC, and found that the virus origin determined the cell tropism of progeny virus. The highest efficiency of re-infection was seen for macrophage-derived dengue virus. Furthermore, in the presence of enhancing antibodies, macrophage-derived virus gave greater enhancement of infection compared with immature DC-derived virus. Taken together, our results highlight the importance of macrophages in dengue infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000474
2016-07-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/7/1531.html?itemId=/content/journal/jgv/10.1099/jgv.0.000474&mimeType=html&fmt=ahah

References

  1. Ayala-Nuñez N. V., Wilschut J., Smit J. M..( 2011;). Monitoring virus entry into living cells using DiD-labeled dengue virus particles. . Methods 55: 137–143. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ayala-Nuñez N. V., Jarupathirun P., Kaptein S. J., Neyts J., Smit J. M..( 2013;). Antibody-dependent enhancement of dengue virus infection is inhibited by SA-17, a doxorubicin derivative. . Antiviral Res 100: 238–245. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bhatt S., Gething P. W., Brady O. J., Messina J. P., Farlow A. W., Moyes C. L., Drake J. M., Brownstein J. S., Hoen A. G. et al.( 2013;). The global distribution and burden of dengue. . Nature 496: 504–507. [CrossRef]
    [Google Scholar]
  4. Blackley S., Kou Z., Chen H., Quinn M., Rose R. C., Schlesinger J. J., Coppage M., Jin X..( 2007;). Primary human splenic macrophages, but not T or B cells, are the principal target cells for dengue virus infection in vitro. . J Virol 81: 13325–13334. [CrossRef] [PubMed]
    [Google Scholar]
  5. Boonnak K., Slike B. M., Burgess T. H., Mason R. M., Wu S. J., Sun P., Porter K., Rudiman I. F., Yuwono D. et al.( 2008;). Role of dendritic cells in antibody-dependent enhancement of dengue virus infection. . J Virol 82: 3939–3951. [CrossRef] [PubMed]
    [Google Scholar]
  6. Boonnak K., Dambach K. M., Donofrio G. C., Tassaneetrithep B., Marovich M. A..( 2011;). Cell type specificity and host genetic polymorphisms influence antibody-dependent enhancement of dengue virus infection. . J Virol 85: 1671–1683. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chen S. T., Lin Y. L., Huang M. T., Wu M. F., Cheng S. C., Lei H. Y., Lee C. K., Chiou T. W., Wong C. H. et al.( 2008;). CLEC5A is critical for dengue-virus-induced lethal disease. . Nature 453: 672–676. [CrossRef] [PubMed]
    [Google Scholar]
  8. Dejnirattisai W., Webb A. I., Chan V., Jumnainsong A., Davidson A., Mongkolsapaya J., Screaton G..( 2011;). Lectin switching during dengue virus infection. . J Infect Dis 203: 1775–1783. [CrossRef] [PubMed]
    [Google Scholar]
  9. Diamond M. S., Roberts T. G., Edgil D., Lu B., Ernst J., Harris E..( 2000;). Modulation of Dengue virus infection in human cells by alpha, beta, and gamma interferons. . J Virol 74: 4957–4966. [CrossRef] [PubMed]
    [Google Scholar]
  10. Freigang S., Probst H. C., van den Broek M..( 2005;). DC infection promotes antiviral CTL priming: the ‘Winkelried' strategy. . Trends Immunol 26: 13–18. [CrossRef] [PubMed]
    [Google Scholar]
  11. Fuller F. J., Marcus P. I..( 1980;). Interferon induction by viruses. IV. Sindbis virus: early passage defective-interfering particles induce interferon. . J Gen Virol 48: 63–73. [CrossRef] [PubMed]
    [Google Scholar]
  12. Halstead S. B..( 1979;). In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. . J Infect Dis 140: 527–533. [CrossRef] [PubMed]
    [Google Scholar]
  13. Halstead S. B..( 1982;). Immune enhancement of viral infection. . Prog Allergy 31: 301–364.[PubMed]
    [Google Scholar]
  14. Halstead S. B., Porterfield J. S., O'Rourke E. J..( 1980;). Enhancement of dengue virus infection in monocytes by flavivirus antisera. . Am J Trop Med Hyg 29: 638–642.[PubMed]
    [Google Scholar]
  15. Honke N., Shaabani N., Cadeddu G., Sorg U. R., Zhang D. E., Trilling M., Klingel K., Sauter M., Kandolf R. et al.( 2011;). Enforced viral replication activates adaptive immunity and is essential for the control of a cytopathic virus. . Nat Immunol 13: 51–57. [CrossRef] [PubMed]
    [Google Scholar]
  16. Huang K. J., Yang Y. C., Lin Y. S., Huang J. H., Liu H. S., Yeh T. M., Chen S. H., Liu C. C., Lei H. Y..( 2006;). The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection. . J Immunol 176: 2825–2832. [CrossRef] [PubMed]
    [Google Scholar]
  17. Jessie K., Fong M. Y., Devi S., Lam S. K., Wong K. T..( 2004;). Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. . J Infect Dis 189: 1411–1418. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kangwanpong D., Bhamarapravati N., Lucia H. L..( 1995;). Diagnosing dengue virus infection in archived autopsy tissues by means of the in situ PCR method: a case report. . Clin Diagn Virol 3: 165–172. [CrossRef] [PubMed]
    [Google Scholar]
  19. Li D., Lott W. B., Lowry K., Jones A., Thu H. M., Aaskov J..( 2011;). Defective interfering viral particles in acute dengue infections. . PLoS One 6: e19447. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lyles D., Rupprecht C..( 2007;). Rhabdoviridae. . In Fields Virology. pp. 1363–1408. Edited by Knipe D., Howley P.. Philadelphia:: Lippincot Williams & Wilkins;.
    [Google Scholar]
  21. Marovich M., Grouard-Vogel G., Louder M., Eller M., Sun W., Wu S. J., Putvatana R., Murphy G., Tassaneetrithep B. et al.( 2001;). Human dendritic cells as targets of dengue virus infection. . J Investig Dermatol Symp Proc 6: 219–224. [CrossRef] [PubMed]
    [Google Scholar]
  22. Miller J. L., de Wet B. J., deWet B. J., Martinez-Pomares L., Radcliffe C. M., Dwek R. A., Rudd P. M., Gordon S..( 2008;). The mannose receptor mediates dengue virus infection of macrophages. . PLoS Pathog 4: e17. [CrossRef] [PubMed]
    [Google Scholar]
  23. Mizumoto K., Ejima K., Yamamoto T., Nishiura H..( 2014;). On the risk of severe dengue during secondary infection: a systematic review coupled with mathematical modeling. . J Vector Borne Dis 51: 153–164.[PubMed]
    [Google Scholar]
  24. Narvaez F., Gutierrez G., Pérez M. A., Elizondo D., Nuñez A., Balmaseda A., Harris E..( 2011;). Evaluation of the traditional and revised WHO classifications of Dengue disease severity. . PLoS Negl Trop Dis 5: e1397. [CrossRef] [PubMed]
    [Google Scholar]
  25. Ochiai H., Kurokawa M., Hayashi K., Niwayama S..( 1988;). Antibody-mediated growth of influenza A NWS virus in macrophagelike cell line P388D1. . J Virol 62: 20–26.[PubMed]
    [Google Scholar]
  26. Pham A. M., Langlois R. A., TenOever B. R..( 2012;). Replication in cells of hematopoietic origin is necessary for Dengue virus dissemination. . PLoS Pathog 8: e1002465. [CrossRef] [PubMed]
    [Google Scholar]
  27. Richter M. K., da Silva Voorham J. M., Torres Pedraza S., Hoornweg T. E., van de Pol D. P., Rodenhuis-Zybert I. A., Wilschut J., Smit J. M..( 2014;). Immature dengue virus is infectious in human immature dendritic cells via interaction with the receptor molecule DC-SIGN. . PLoS One 9: e98785. [CrossRef] [PubMed]
    [Google Scholar]
  28. Russell P. K., Yuill T. M., Nisalak A., Udomsakdi S., Gould D. J., Winter P. E..( 1968;). An insular outbreak of dengue hemorrhagic fever. II. Virologic and serologic studies. . Am J Trop Med Hyg 17: 600–608.[PubMed]
    [Google Scholar]
  29. Styer L. M., Kent K. A., Albright R. G., Bennett C. J., Kramer L. D., Bernard K. A..( 2007;). Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. . PLoS Pathog 3: 1262–1270. [CrossRef] [PubMed]
    [Google Scholar]
  30. Sun P., Fernandez S., Marovich M. A., Palmer D. R., Celluzzi C. M., Boonnak K., Liang Z., Subramanian H., Porter K. R. et al.( 2009;). Functional characterization of ex vivo blood myeloid and plasmacytoid dendritic cells after infection with dengue virus. . Virology 383: 207–215. [CrossRef] [PubMed]
    [Google Scholar]
  31. Sung S. S..( 1985;). Phagocytosis by mouse peritoneal macrophages plated on monoclonal antibody-coated immune complex-substrates: effects of complexes of different IgG subclasses on Fc receptor functions. . J Immunol 135: 1981–1986.[PubMed]
    [Google Scholar]
  32. van der Schaar H. M., Rust M. J., Waarts B. L., van der Ende-Metselaar H., Kuhn R. J., Wilschut J., Zhuang X., Smit J. M..( 2007;). Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. . J Virol 81: 12019–12028. [CrossRef] [PubMed]
    [Google Scholar]
  33. Wu M. F., Chen S. T., Yang A. H., Lin W. W., Lin Y. L., Chen N. J., Tsai I. S., Li L., Hsieh S. L..( 2013;). CLEC5A is critical for dengue virus-induced inflammasome activation in human macrophages. . Blood 121: 95–106. [CrossRef] [PubMed]
    [Google Scholar]
  34. Wu S. J., Grouard-Vogel G., Sun W., Mascola J. R., Brachtel E., Putvatana R., Louder M. K., Filgueira L., Marovich M. A. et al.( 2000;). Human skin Langerhans cells are targets of dengue virus infection. . Nat Med 6: 816–820. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000474
Loading
/content/journal/jgv/10.1099/jgv.0.000474
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error