1887

Abstract

Mastomys coucha, an African rodent, is a useful animal model of papillomavirus infection, as it develops both premalignant and malignant skin tumors as a consequence of a persistent infection with Mastomys natalensis papillomavirus (MnPV). In this study, we mapped the MnPV transcriptome in productive lesions by both classical molecular techniques and high-throughput RNA sequencing. Combination of these methods revealed a complex and comprehensive transcription map, with novel splicing events not described in other papillomaviruses. Furthermore, these splicing occurrences could potentially lead to the expression of novel E2, E1E4, E7 and L2 isoforms. Expression level estimation of each transcript showed that late-region mRNAs considerably outnumber early transcripts, with species coding for L1 and E1E4 being the most abundant. In summary, the full transcription map assembled in this study will allow us to further understand MnPV gene expression and the mechanisms that lead to natural tumour development.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000471
2016-07-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/7/1658.html?itemId=/content/journal/jgv/10.1099/jgv.0.000471&mimeType=html&fmt=ahah

References

  1. Ajiro M., Zheng Z. M., Ajiro M., Zheng Z. M..( 2015;). E6^E7, a novel splice isoform protein of human papillomavirus 16, stabilizes viral E6 and E7 oncoproteins via HSP90 and GRP78. . MBio 6: e02068022014. [CrossRef] [PubMed]
    [Google Scholar]
  2. Alloul N., Sherman L..( 1999;). The E2 protein of human papillomavirus type 16 is translated from a variety of differentially spliced polycistronic mRNAs. . J Gen Virol 80: 29–37. [CrossRef] [PubMed]
    [Google Scholar]
  3. Amtmann E., Volm M., Wayss K..( 1984;). Tumour induction in the rodent Mastomys natalensis by activation of endogenous papilloma virus genomes. . Nature 308: 291–292.[PubMed] [CrossRef]
    [Google Scholar]
  4. Baars S., Bachmann A., Levitzki A., Rösl F..( 2003;). Tyrphostin AG 555 inhibits bovine papillomavirus transcription by changing the ratio between E2 transactivator/repressor function. . J Biol Chem 278: 37306–37313. [CrossRef] [PubMed]
    [Google Scholar]
  5. Baker C., Calef C..( 1997;). Maps of papillomavirus mRNA transcripts. . In Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences, pp. 3–10. Los Alamos, NM:: Los Alamos National Laboratory;.
    [Google Scholar]
  6. Brown D. R., Pratt L., Bryan J. T., Fife K. H., Jansen K..( 1996;). Virus-like particles and E1E4 protein expressed from the human papillomavirus type 11 bicistronic E1E4L1 transcript. . Virology 222: 43–50.[PubMed] [CrossRef]
    [Google Scholar]
  7. Bucher P..( 1990;). Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. . J Mol Biol 212: 563–578. [CrossRef] [PubMed]
    [Google Scholar]
  8. Butler J. E., Kadonaga J. T..( 2002;). The RNA polymerase II core promoter: a key component in the regulation of gene expression. . Genes Dev 16: 2583–2592. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bzhalava D., Mühr L. S., Lagheden C., Ekström J., Forslund O., Dillner J., Hultin E..( 2014;). Deep sequencing extends the diversity of human papillomaviruses in human skin. . Sci Rep 4: 5807. [CrossRef] [PubMed]
    [Google Scholar]
  10. Bzhalava D., Eklund C., Dillner J..( 2015;). International standardization and classification of human papillomavirus types. . Virology 476: 341–344. [CrossRef] [PubMed]
    [Google Scholar]
  11. Cardoso J. C., Calonje E..( 2011;). Cutaneous manifestations of human papillomaviruses: a review. . Acta Dermatovenerol Alp Pannonica Adriat 20: 145–154.[PubMed]
    [Google Scholar]
  12. Chen J., Xue Y., Poidinger M., Lim T., Chew S. H., Pang C. L., Abastado J. P., Thierry F..( 2014;). Mapping of HPV transcripts in four human cervical lesions using RNAseq suggests quantitative rearrangements during carcinogenic progression. . Virology 462-463: 14–24.[CrossRef]
    [Google Scholar]
  13. Chiang C. M., Broker T. R., Chow L. T..( 1991;). An E1ME2C fusion protein encoded by human papillomavirus type 11 is a sequence-specific transcription repressor. . J Virol 65: 3317–3329.[PubMed]
    [Google Scholar]
  14. Choe J., Vaillancourt P., Stenlund A., Botchan M..( 1989;). Bovine papillomavirus type 1 encodes two forms of a transcriptional repressor: structural and functional analysis of new viral cDNAs. . J Virol 63: 1743–1755.[PubMed]
    [Google Scholar]
  15. Chow L., Broker T..( 2007;). Human papillomavirus transcription. . In The Papillomaviruses, pp. 109–144. Edited by Garcea R. L.. Springer US:: D. DiMaio;.
    [Google Scholar]
  16. Doorbar J..( 2013;). The E4 protein; structure, function and patterns of expression. . Virology 445: 80–98. [CrossRef] [PubMed]
    [Google Scholar]
  17. Doorbar J..( 2016;). Model systems of human papillomavirus-associated disease. . J Pathol 238: 166–179. [CrossRef] [PubMed]
    [Google Scholar]
  18. Grassmann K., Rapp B., Maschek H., Petry K. U., Iftner T..( 1996;). Identification of a differentiation-inducible promoter in the E7 open reading frame of human papillomavirus type 16 (HPV-16) in raft cultures of a new cell line containing high copy numbers of episomal HPV-16 DNA. . J Virol 70: 2339–2349.[PubMed]
    [Google Scholar]
  19. Houseley J., LaCava J., Tollervey D..( 2006;). RNA-quality control by the exosome. . Nat Rev Mol Cell Biol 7: 529–539. [CrossRef] [PubMed]
    [Google Scholar]
  20. Hummel M., Hudson J. B., Laimins L. A..( 1992;). Differentiation-induced and constitutive transcription of human papillomavirus type 31 b in cell lines containing viral episomes. . J Virol 66: 6070–6080.[PubMed]
    [Google Scholar]
  21. Isok-Paas H., Männik A., Ustav E., Ustav M..( 2015;). The transcription map of HPV11 in U2OS cells adequately reflects the initial and stable replication phases of the viral genome. . Virol J 12: 59. [CrossRef] [PubMed]
    [Google Scholar]
  22. Jia R., Liu X., Tao M., Kruhlak M., Guo M., Meyers C., Baker C. C., Zheng Z. M..( 2009;). Control of the papillomavirus early-to-late switch by differentially expressed SRp20. . J Virol 83: 167–180. [CrossRef] [PubMed]
    [Google Scholar]
  23. Johansson C., Schwartz S..( 2013;). Regulation of human papillomavirus gene expression by splicing and polyadenylation. . Nat Rev Microbiol 11: 239–251. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S. L..( 2013;). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. . Genome Biol 14: R36. [CrossRef] [PubMed]
    [Google Scholar]
  25. Lee C., Laimins L. A..( 2007;). The differentiation-dependent life cycle of human Papillomaviruses in Keratinocytes. . In The Papillomaviruses, pp. 45–67. Edited by Garcea R. L.. Springer US:: D.DiMaio;.[CrossRef]
    [Google Scholar]
  26. Li W., Jiang T..( 2012;). Transcriptome assembly and isoform expression level estimation from biased RNA-Seq reads. . Bioinformatics 28: 2914–2921. [CrossRef] [PubMed]
    [Google Scholar]
  27. Ma Y., Madupu R., Karaoz U., Nossa C. W., Yang L., Yooseph S., Yachimski P. S., Brodie E. L., Nelson K. E., Pei Z..( 2014;). Human papillomavirus community in healthy persons, defined by metagenomics analysis of human microbiome project shotgun sequencing data sets. . J Virol 88: 4786–4797. [CrossRef] [PubMed]
    [Google Scholar]
  28. Martin M..( 2011;). Cutadapt removes adapter sequences from high-throughput sequencing reads. . EMBnet.journal 17: 10–13. [CrossRef]
    [Google Scholar]
  29. McBride A. A..( 2013;). The papillomavirus E2 proteins. . Virology 445: 57–79. [CrossRef] [PubMed]
    [Google Scholar]
  30. Milligan S. G., Veerapraditsin T., Ahamet B., Mole S., Graham S. V..( 2007;). Analysis of novel human papillomavirus type 16 late mRNAs in differentiated W12 cervical epithelial cells. . Virology 360: 172–181. [CrossRef] [PubMed]
    [Google Scholar]
  31. Nafz J., Schäfer K., Chen S. F., Bravo I. G., Ibberson M., Nindl I., Stockfleth E., Rösl F..( 2008;). A novel rodent papillomavirus isolated from anogenital lesions in its natural host. . Virology 374: 186–197. [CrossRef] [PubMed]
    [Google Scholar]
  32. Narlikar L..( 2014;). Multiple novel promoter-architectures revealed by decoding the hidden heterogeneity within the genome. . Nucleic Acids Res 42: 12388–12403. [CrossRef] [PubMed]
    [Google Scholar]
  33. Nasseri M., Hirochika R., Broker T. R., Chow L. T..( 1987;). A human papilloma virus type 11 transcript encoding an E1E4 protein. . Virology 159: 433–439.[PubMed] [CrossRef]
    [Google Scholar]
  34. Ozbun M. A., Meyers C..( 1997;). Characterization of late gene transcripts expressed during vegetative replication of human papillomavirus type 31 b. . J Virol 71: 5161–5172.[PubMed]
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T..( 1989;). Molecular Cloning. New York:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  36. Sankovski E., Männik A., Geimanen J., Ustav E., Ustav M..( 2014;). Mapping of betapapillomavirus human papillomavirus 5 transcription and characterization of viral-genome replication function. . J Virol 88: 961–973. [CrossRef] [PubMed]
    [Google Scholar]
  37. Schäfer K., Neumann J., Waterboer T., Rösl F..( 2011;). Serological markers for papillomavirus infection and skin tumour development in the rodent model Mastomys coucha. . J Gen Virol 92: 383–394. [CrossRef] [PubMed]
    [Google Scholar]
  38. Schmitt M., Dalstein V., Waterboer T., Clavel C., Gissmann L., Pawlita M..( 2010;). Diagnosing cervical cancer and high-grade precursors by HPV16 transcription patterns. . Cancer Res 70: 249–256. [CrossRef] [PubMed]
    [Google Scholar]
  39. Sherman L., Alloul N..( 1992;). Human papillomavirus type 16 expresses a variety of alternatively spliced mRNAs putatively encoding the E2 protein. . Virology 191: 953–959.[PubMed] [CrossRef]
    [Google Scholar]
  40. Stubenrauch F., Malejczyk J., Fuchs P. G., Pfister H..( 1992;). Late promoter of human papillomavirus type 8 and its regulation. . J Virol 66: 3485–3493.[PubMed]
    [Google Scholar]
  41. Tan C. H., Tachezy R., Van Ranst M., Chan S. Y., Bernard H. U., Burk R. D..( 1994;). The Mastomys natalensis papillomavirus: nucleotide sequence, genome organization, and phylogenetic relationship of a rodent papillomavirus involved in tumorigenesis of cutaneous epithelia. . Virology 198: 534–541. [CrossRef] [PubMed]
    [Google Scholar]
  42. Tang S., Tao M., McCoy J. P., Jr., Zheng Z. M..( 2006;). The E7 oncoprotein is translated from spliced E6*I transcripts in high-risk human papillomavirus type 16- or type 18-positive cervical cancer cell lines via translation reinitiation. . J Virol 80: 4249–4263. [CrossRef] [PubMed]
    [Google Scholar]
  43. Tomita Y., Simizu B..( 1993;). Translational properties of the human papillomavirus type-6 L1-coding mRNA. . Gene 133: 223–225.[PubMed] [CrossRef]
    [Google Scholar]
  44. Van Doorslaer K., Tan Q., Xirasagar S., Bandaru S., Gopalan V., Mohamoud Y., Huyen Y., McBride A. A..( 2013;). The Papillomavirus Episteme: a central resource for papillomavirus sequence data and analysis. . Nucleic Acids Res 41: D571–578. [CrossRef] [PubMed]
    [Google Scholar]
  45. Vinzón S. E., Rösl F..( 2015;). HPV vaccination for prevention of skin cancer. . Hum Vaccin Immunother 11: 353–357. [CrossRef] [PubMed]
    [Google Scholar]
  46. Vinzón S. E., Braspenning-Wesch I., Müller M., Geissler E. K., Nindl I., Gröne H. J., Schäfer K., Rösl F..( 2014;). Protective vaccination against papillomavirus-induced skin tumors under immunocompetent and immunosuppressive conditions: a preclinical study using a natural outbred animal model. . PLoS Pathog 10: e1003924. [CrossRef] [PubMed]
    [Google Scholar]
  47. Wang J. W., Roden R. B..( 2013;). L2, the minor capsid protein of papillomavirus. . Virology 445: 175–186. [CrossRef] [PubMed]
    [Google Scholar]
  48. Wang X., Meyers C., Wang H. K., Chow L. T., Zheng Z. M..( 2011;). Construction of a full transcription map of human papillomavirus type 18 during productive viral infection. . J Virol 85: 8080–8092. [CrossRef] [PubMed]
    [Google Scholar]
  49. Zhao J., Hyman L., Moore C..( 1999;). Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. . Microbiol Mol Biol Rev 63: 405–445.[PubMed]
    [Google Scholar]
  50. Zheng Z. M..( 2004;). Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression. . J Biomed Sci 11: 278–294. [CrossRef] [PubMed]
    [Google Scholar]
  51. Zheng Z. M., Baker C. C..( 2006;). Papillomavirus genome structure, expression, and post-transcriptional regulation. . Front Biosci 11: 2286–2302.[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000471
Loading
/content/journal/jgv/10.1099/jgv.0.000471
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error