1887

Abstract

Multiple subtypes and many antigenic variants of influenza A virus (IAV) co-circulate in swine in the USA, complicating effective use of commercial vaccines to control disease and transmission. Whole inactivated virus (WIV) vaccines may provide partial protection against IAV with substantial antigenic drift, but have been shown to induce vaccine-associated enhanced respiratory disease (VAERD) when challenged with an antigenic variant of the same haemagglutinin (HA) subtype. This study investigated the role the immune response against HA, neuraminidase (NA) and nucleoprotein (NP) may play in VAERD by reverse engineering vaccine and challenge viruses on a common backbone and using them in a series of vaccination/challenge trials. Mismatched HA between vaccine and challenge virus was necessary to induce VAERD. However, vaccines containing a matched NA abrogated the VAERD phenomenon induced by the HA mismatch and this was correlated with NA-inhibiting (NI) antibodies. Divergence between the two circulating swine N2 lineages (92 % identity) resulted in a loss of NI cross-reactivity and also resulted in VAERD with the mismatched HA. The NP lineage selected for use in the WIV vaccine strains did not affect protection or pathology. Thus the combination of HA and NA in the vaccine virus strains played a substantial role in vaccine protection versus immunopathology, suggesting that vaccines that target the HA protein alone could be more prone to VAERD due to the absence of cross-protective NI antibodies.

Keyword(s): influenza A virus , NA , Swine and VAERD
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000468
2016-07-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/7/1489.html?itemId=/content/journal/jgv/10.1099/jgv.0.000468&mimeType=html&fmt=ahah

References

  1. Anderson T. K., Nelson M. I., Kitikoon P., Swenson S. L., Korslund J. A., Vincent A. L..( 2013;). Population dynamics of cocirculating swine influenza A viruses in the United States from 2009 to 2012. . Influenza Other Respir Viruses 7: 42–51. [CrossRef]
    [Google Scholar]
  2. Assarsson E., Bui H. H., Sidney J., Zhang Q., Glenn J., Oseroff C., Mbawuike I. N., Alexander J., Newman M. J., other authors.( 2008;). Immunomic analysis of the repertoire of T-cell specificities for influenza A virus in humans. . J Virol 82: 12241–12251. [CrossRef] [PubMed]
    [Google Scholar]
  3. Constantine N., Lana D..( 2003;). Immunoassays for the diagnosis of infectious diseases. . In Manual of Clinical Microbiology, , 8th edn., pp. 218–233. Edited by Murray P. R.. Washington, DC:: ASM Press;.
    [Google Scholar]
  4. Gauger P. C., Vincent A. L..( 2014;). Serum virus neutralization assay for detection and quantitation of serum-neutralizing antibodies to influenza A virus in swine. . In Animal Influenza Virus, pp. 313–324. Edited by Spackman E.. New York, NY:: Springer;. [CrossRef]
    [Google Scholar]
  5. Gauger P. C., Vincent A. L., Loving C. L., Lager K. M., Janke B. H., Kehrli M. E., Roth J. A..( 2011;). Enhanced pneumonia and disease in pigs vaccinated with an inactivated human-like (delta-cluster) H1N2 vaccine and challenged with pandemic 2009 H1N1 influenza virus. . Vaccine 29: 2712–2719. [CrossRef] [PubMed]
    [Google Scholar]
  6. Gauger P. C., Vincent A. L., Loving C. L., Henningson J. N., Lager K. M., Janke B. H., Kehrli M. E., Roth J. A..( 2012;). Kinetics of lung lesion development and pro-inflammatory cytokine response in pigs with vaccine-associated enhanced respiratory disease induced by challenge with pandemic (2009) A/H1N1 influenza virus. . Vet Pathol 49: 900–912.[CrossRef]
    [Google Scholar]
  7. Gras S., Kedzierski L., Valkenburg S. A., Laurie K., Liu Y. C., Denholm J. T., Richards M. J., Rimmelzwaan G. F., Kelso A., other authors.( 2010;). Cross-reactive CD8+ T-cell immunity between the pandemic H1N1-2009 and H1N1-1918 influenza A viruses. . Proc Natl Acad Sci U S A 107: 12599–12604. [CrossRef] [PubMed]
    [Google Scholar]
  8. Halbur P. G., Paul P. S., Frey M. L., Landgraf J., Eernisse K., Meng X. J., Lum M. A., Andrews J. J., Rathje J. A..( 1995;). Comparison of the pathogenicity of two US porcine reproductive and respiratory syndrome virus isolates with that of the Lelystad virus. . Vet Pathol 32: 648–660.[PubMed] [CrossRef]
    [Google Scholar]
  9. Halstead S. B., O'Rourke E. J..( 1977;). Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. . J Exp Med 146: 201–217. [CrossRef] [PubMed]
    [Google Scholar]
  10. Hoffmann E., Neumann G., Kawaoka Y., Hobom G., Webster R. G..( 2000;). A DNA transfection system for generation of influenza A virus from eight plasmids. . Proc Natl Acad Sci U S A 97: 6108–6113. [CrossRef] [PubMed]
    [Google Scholar]
  11. Howden K. J., Brockhoff E. J., Caya F. D., McLeod L. J., Lavoie M., Ing J. D., Bystrom J. M., Alexandersen S., Pasick J. M., other authors.( 2009;). An investigation into human pandemic influenza virus (H1N1) 2009 on an Alberta swine farm. . Can Vet J 50: 1153–1161.[PubMed]
    [Google Scholar]
  12. Janke B. H..( 2013;). Clinicopathological features of Swine influenza. . In Swine Influenza , pp. 69–83. Edited by Richt J. A., Webby R. J.. Berlin/Heidelberg, DE:: Springer;. [CrossRef]
    [Google Scholar]
  13. Jegaskanda S., Job E. R., Kramski M., Laurie K., Isitman G., de Rose R., Winnall W. R., Stratov I., Brooks A. G., other authors.( 2013;). Cross-reactive influenza-specific antibody-dependent cellular cytotoxicity antibodies in the absence of neutralizing antibodies. . J Immunol 190: 1837–1848. [CrossRef] [PubMed]
    [Google Scholar]
  14. Jegaskanda S., Reading P. C., Kent S. J..( 2014;). Influenza-specific antibody-dependent cellular cytotoxicity: toward a universal influenza vaccine. . J Immunol 193: 469–475. [CrossRef] [PubMed]
    [Google Scholar]
  15. Johansson B. E., Cox M. M..( 2011;). Influenza viral neuraminidase: the forgotten antigen. . Expert Rev Vaccines 10: 1683–1695. [CrossRef] [PubMed]
    [Google Scholar]
  16. Khurana S., Loving C. L., Manischewitz J., King L. R., Gauger P. C., Henningson J., Vincent A. L., Golding H..( 2013;). Vaccine-induced anti-HA2 antibodies promote virus fusion and enhance influenza virus respiratory disease. . Sci Transl Med 5: 200ra114. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kitikoon P., Nilubol D., Erickson B. J., Janke B. H., Hoover T. C., Sornsen S. A., Thacker E. L..( 2006;). The immune response and maternal antibody interference to a heterologous H1N1 swine influenza virus infection following vaccination. . Vet Immunol Immunopathol 112: 117–128. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lambré C. R., Terzidis H., Greffard A., Webster R. G..( 1990;). Measurement of anti-influenza neuraminidase antibody using a peroxidase-linked lectin and microtitre plates coated with natural substrates. . J Immunol Methods 135: 49–57. [CrossRef] [PubMed]
    [Google Scholar]
  19. Marcelin G., Sandbulte M. R., Webby R. J..( 2012;). Contribution of antibody production against neuraminidase to the protection afforded by influenza vaccines. . Rev Med Virol 22: 267–279. [CrossRef] [PubMed]
    [Google Scholar]
  20. Monsalvo A. C., Batalle J. P., Lopez M. F., Krause J. C., Klemenc J., Hernandez J. Z., Maskin B., Bugna J., Rubinstein C., other authors.( 2011;). Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. . Nat Med 17: 195–199. [CrossRef] [PubMed]
    [Google Scholar]
  21. Murphy B. R., Prince G. A., Walsh E. E., Kim H. W., Parrott R. H., Hemming V. G., Rodriguez W. J., Chanock R. M..( 1986;). Dissociation between serum neutralizing and glycoprotein antibody responses of infants and children who received inactivated respiratory syncytial virus vaccine. . J Clin Microbiol 24: 197–202.[PubMed]
    [Google Scholar]
  22. Nelson M. I., Vincent A. L., Kitikoon P., Holmes E. C., Gramer M. R..( 2012;). Evolution of novel reassortant A/H3N2 influenza viruses in North American swine and humans, 2009-2011. . J Virol 86: 8872–8878. [CrossRef] [PubMed]
    [Google Scholar]
  23. O'Brien K. B., Morrison T. E., Dundore D. Y., Heise M. T., Schultz-Cherry S..( 2011;). A protective role for complement C3 protein during pandemic 2009 H1N1 and H5N1 influenza A virus infection. . PLoS One 6: e17377. [CrossRef] [PubMed]
    [Google Scholar]
  24. Parzych E. M., DiMenna L. J., Latimer B. P., Small J. C., Kannan S., Manson B., Lasaro M. O., Wherry E. J., Ertl H. C..( 2013;). Influenza virus specific CD8(+) T cells exacerbate infection following high dose influenza challenge of aged mice. . Biomed Res Int 2013: 876314. [CrossRef] [PubMed]
    [Google Scholar]
  25. Pena L., Vincent A. L., Ye J., Ciacci-Zanella J. R., Angel M., Lorusso A., Gauger P. C., Janke B. H., Loving C. L., other authors.( 2011;). Modifications in the polymerase genes of a swine-like triple-reassortant influenza virus to generate live attenuated vaccines against 2009 pandemic H1N1 viruses. . J Virol 85: 456–469. [CrossRef] [PubMed]
    [Google Scholar]
  26. Perrone L. A., Plowden J. K., García-Sastre A., Katz J. M., Tumpey T. M..( 2008;). H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. . PLoS Pathog 4: e1000115. [CrossRef] [PubMed]
    [Google Scholar]
  27. Rajão D. S., Loving C. L., Gauger P. C., Kitikoon P., Vincent A. L..( 2014;). Influenza A virus hemagglutinin protein subunit vaccine elicits vaccine-associated enhanced respiratory disease in pigs. . Vaccine 32: 5170–5176. [CrossRef] [PubMed]
    [Google Scholar]
  28. Reed l. J., Muench H..( 1938;). A simple method of estimating fifty per cent endpoints. . Am J Epidemiol 27: 493–497.
    [Google Scholar]
  29. Rott R., Becht H., Orlich M..( 1974;). The significance of influenza virus neuraminidase in immunity. . J Gen Virol 22: 35–41. [CrossRef] [PubMed]
    [Google Scholar]
  30. Sandbulte M. R., Eichelberger M. C..( 2014;). Analyzing swine sera for functional antibody titers against influenza A neuraminidase proteins using an enzyme-linked lectin assay (ELLA). . Methods Mol Biol 1161: 337–345. [CrossRef] [PubMed]
    [Google Scholar]
  31. Shanks G. D., Brundage J. F..( 2012;). Pathogenic responses among young adults during the 1918 influenza pandemic. . Emerg Infect Dis 18: 201–207. [CrossRef] [PubMed]
    [Google Scholar]
  32. Skowronski D. M., De Serres G., Crowcroft N. S., Janjua N. Z., Boulianne N., Hottes T. S., Rosella L. C., Dickinson J. A., Gilca R., other authors.( 2010;). Association between the 2008-09 seasonal influenza vaccine and pandemic H1N1 illness during spring-summer 2009: Four observational studies from Canada. . PLoS Med 7: e1000258. [CrossRef] [PubMed]
    [Google Scholar]
  33. Sylte M. J., Suarez D. L..( 2009;). Influenza neuraminidase as a vaccine antigen. . Curr Top Microbiol Immunol 333: 227–241. [CrossRef] [PubMed]
    [Google Scholar]
  34. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). MEGA6: Molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  35. Tang Y., Lee C. W., Zhang Y., Senne D. A., Dearth R., Byrum B., Perez D. R., Suarez D. L., Saif Y. M..( 2005;). Isolation and characterization of H3N2 influenza A virus from Turkeys. . Avian Dis 49: 207–213. [CrossRef] [PubMed]
    [Google Scholar]
  36. Taubenberger J. K., Morens D. M..( 2006;). 1918 influenza: the mother of all pandemics. . Emerg Infect Dis 12: 15–22. [CrossRef] [PubMed]
    [Google Scholar]
  37. To K. K., Zhang A. J., Hung I. F., Xu T., Ip W. C., Wong R. T., Ng J. C., Chan J. F., Chan K. H., other authors.( 2012;). High titer and avidity of nonneutralizing antibodies against influenza vaccine antigen are associated with severe influenza. . Clin Vaccine Immunol 19: 1012–1018. [CrossRef] [PubMed]
    [Google Scholar]
  38. Van Reeth K., Nauwynck H., Pensaert M..( 1998;). Bronchoalveolar interferon-alpha, tumor necrosis factor-alpha, interleukin-1, and inflammation during acute influenza in pigs: a apossible model for humans?. J Infect Dis 177: 1076–1079.[PubMed] [CrossRef]
    [Google Scholar]
  39. Vincent A. L., Lager K. M., Janke B. H., Gramer M. R., Richt J. A..( 2008a;). Failure of protection and enhanced pneumonia with a US H1N2 swine influenza virus in pigs vaccinated with an inactivated classical swine H1N1 vaccine. . Vet Microbiol 126: 310–323.[CrossRef]
    [Google Scholar]
  40. Vincent A. L., Ma W., Lager K. M., Janke B. H., Richt J. A..( 2008b;). Swine influenza viruses: a North American perspective. . In Adv Virus Res, pp. 127–154. Edited by Maramorosch K., Shatkin A. J., Murphy F. A.. Burlington, MA:: Academic Press;.
    [Google Scholar]
  41. Vincent A. L., Ma W., Lager K. M., Gramer M. R., Richt J. A., Janke B. H..( 2009;). Characterization of a newly emerged genetic cluster of H1N1 and H1N2 swine influenza virus in the United States. . Virus Genes 39: 176–185. [CrossRef] [PubMed]
    [Google Scholar]
  42. Vincent A. L., Ma W., Lager K. M., Richt J. A., Janke B. H., Sandbulte M. R., Gauger P. C., Loving C. L., Webby R. J., other authors.( 2012;). Live attenuated influenza vaccine provides superior protection from heterologous infection in pigs with maternal antibodies without inducing vaccine-associated enhanced respiratory disease. . J Virol 86: 10597–10605. [CrossRef] [PubMed]
    [Google Scholar]
  43. Wan H., Sorrell E. M., Song H., Hossain M. J., Ramirez-Nieto G., Monne I., Stevens J., Cattoli G., Capua I., other authors.( 2008;). Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. . PLoS One 3: e2923. [CrossRef] [PubMed]
    [Google Scholar]
  44. Wiley J. A., Cerwenka A., Harkema J. R., Dutton R. W., Harmsen A. G..( 2001;). Production of interferon-gamma by influenza hemagglutinin-specific CD8 effector T cells influences the development of pulmonary immunopathology. . Am J Pathol 158: 119–130.[PubMed] [CrossRef]
    [Google Scholar]
  45. World Health Organization( 2002;). WHO Manual on Animal Influenza Diagnosis and Surveillance, , 2nd edn., Geneva;.
    [Google Scholar]
  46. Worobey M., Han G. Z., Rambaut A..( 2014;). Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus. . Proc Natl Acad Sci U S A 111: 8107–8112. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000468
Loading
/content/journal/jgv/10.1099/jgv.0.000468
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error