1887

Abstract

Avian infectious bronchitis is a highly contagious disease caused by infectious bronchitis virus (IBV) that affects poultry production worldwide. The absence of vaccine cross-protection and the frequent emergence of new variant strains complicate control of IBV. Here we designed a study to measure the evolution dynamics of IBV strains in China. One hundered and seven complete sequences and 1022 S1-region sequences of Chinese IBVs isolated between 1994 and 2014 were analysed by using MEGA 5.0 software and the Bayesian analysis sampling trees (BEAST) method, and selection pressure on different proteins was assessed. The phylogenetic dissimilarity of different gene trees in the data set indicated possible recombination. Fourteen isolates were identified as recombinants, possibly generated from vaccines of the Massachusetts serotype in recombination with circulating viruses. The earliest IBV in China was found to have existed in the early 1900s, and continues to evolve at a rate of approximately 10 substitutions per site per year. We found that purifying selection was the main evolutionary pressure in the protein-coding regions, while the S1 gene bears the greatest positive selection pressure. The proportion of QX-like genotype strains increased over time. These results indicate that the genotypes of Chinese IBVs have undergone a remarkable transition during the past 20 years.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000464
2016-07-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/7/1566.html?itemId=/content/journal/jgv/10.1099/jgv.0.000464&mimeType=html&fmt=ahah

References

  1. Alvarado Mora M. V., Romano C. M., Gomes-Gouvêa M. S., Gutierrez M. F., Botelho L., Carrilho F. J., Pinho J. R.. 2011; Molecular characterization of the Hepatitis B virus genotypes in Colombia: a Bayesian inference on the genotype F. Infect Genet Evol11:103–108 [CrossRef][PubMed]
    [Google Scholar]
  2. Becher P., Orlich M., Thiel H. J.. 2001; RNA recombination between persisting pestivirus and a vaccine strain: generation of cytopathogenic virus and induction of lethal disease. J Virol75:6256–6264 [CrossRef][PubMed]
    [Google Scholar]
  3. Cavanagh D., Naqi S.. 2003; Infectious bronchitis. Diseases of Poultry11:101–119
    [Google Scholar]
  4. Cavanagh D.. 2007; Coronavirus avian infectious bronchitis virus. Vet Res38:281–297 [CrossRef][PubMed]
    [Google Scholar]
  5. Chong Y. L., Padhi A., Hudson P. J., Poss M.. 2010; The effect of vaccination on the evolution and population dynamics of avian paramyxovirus-1. Pathog6:e1000872
    [Google Scholar]
  6. Compton S. R., Barthold S. W., Smith A. L.. 1993; The cellular and molecular pathogenesis of coronaviruses. Lab Anim Sci43:15–28[PubMed]
    [Google Scholar]
  7. Cook J. K., Jackwood M., Jones R. C.. 2012; The long view: 40 years of infectious bronchitis research. Avian Pathol41:239–250 [CrossRef][PubMed]
    [Google Scholar]
  8. De Wit J. J., Cook J. K., van der Heijden H. M.. 2011; Infectious bronchitis virus variants: a review of the history, current situation and control measures. Avian Pathol40:223–235 [CrossRef][PubMed]
    [Google Scholar]
  9. Drexler J. F., Corman V. M., Drosten C.. 2014; Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res101:45–56 [CrossRef][PubMed]
    [Google Scholar]
  10. Drummond A. J., Suchard M. A., Xie D., Rambaut A.. 2012; Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol29:1969–1973 [CrossRef][PubMed]
    [Google Scholar]
  11. Feng J., Hu Y., Ma Z., Yu Q., Zhao J., Liu X., Zhang G.. 2012; Virulent avian infectious bronchitis virus, People's Republic of China. Emerg Infect Dis18:1994–2001 [CrossRef][PubMed]
    [Google Scholar]
  12. Gibbs M. J., Armstrong J. S., Gibbs A. J.. 2000; Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics16:573–582 [CrossRef][PubMed]
    [Google Scholar]
  13. Holmes E. C., Worobey M., Rambaut A.. 1999; Phylogenetic evidence for recombination in dengue virus. Mol Biol Evol16:405–409[PubMed][CrossRef]
    [Google Scholar]
  14. Hon C. C., Lam T. T., Yip C. W., Wong R. T., Shi M., Jiang J., Zeng F., Leung F. C.. 2008; Phylogenetic evidence for homologous recombination within the family Birnaviridae. J Gen Virol89:3156–3164 [CrossRef][PubMed]
    [Google Scholar]
  15. Ignjatovic J., Sapats S.. 2005; Identification of previously unknown antigenic epitopes on the S and N proteins of avian infectious bronchitis virus. Arch Virol150:1813–1831 [CrossRef][PubMed]
    [Google Scholar]
  16. Korber B., Muldoon M., Theiler J., Gao F., Gupta R., Lapedes A., Hahn B. H., Wolinsky S., Bhattacharya T.. 2000; Timing the ancestor of the HIV-1 pandemic strains. Science288:1789–1796 [CrossRef][PubMed]
    [Google Scholar]
  17. Kottier S. A., Cavanagh D., Britton P.. 1995; Experimental evidence of recombination in coronavirus infectious bronchitis virus. Virology (Auckl)213:569–580[CrossRef]
    [Google Scholar]
  18. Kuo S. M., Kao H. W., Hou M. H., Wang C. H., Lin S. H., Su H. L.. 2013; Evolution of infectious bronchitis virus in Taiwan: positively selected sites in the nucleocapsid protein and their effects on RNA-binding activity. Vet Microbiol162:408–418 [CrossRef][PubMed]
    [Google Scholar]
  19. Kusters J. G., Jager E. J., Niesters H. G., van der Zeijst B. A.. 1990; Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus. Vaccine8:605–608 [CrossRef][PubMed]
    [Google Scholar]
  20. Lai M. M., Cavanagh D.. 1997; The molecular biology of coronaviruses. Adv Virus Res48:1–100[PubMed][CrossRef]
    [Google Scholar]
  21. Lee C. W., Hilt D. A., Jackwood M. W.. 2003; Typing of field isolates of infectious bronchitis virus based on the sequence of the hypervariable region in the S1 gene. J Vet Diagn Invest15:344–348[PubMed][CrossRef]
    [Google Scholar]
  22. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R.. 1997; The RDP (Ribosomal Database Project). Nucleic Acids Res25:109–110 [CrossRef][PubMed]
    [Google Scholar]
  23. Martin D. P., Posada D., Crandall K. A., Williamson C.. 2005; A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses21:98–102 [CrossRef][PubMed]
    [Google Scholar]
  24. Martin D. P., Lemey P., Lott M., Moulton V., Posada D., Lefeuvre P.. 2010; RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics26:2462–2463 [CrossRef][PubMed]
    [Google Scholar]
  25. Martin D. P., Murrell B., Golden M., Khoosal A., Muhire B.. 2015; RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol1:1–5 [CrossRef]
    [Google Scholar]
  26. Miller P. J., Kim L. M., Ip H. S., Afonso C. L.. 2009; Evolutionary dynamics of newcastle disease virus. Virology (Auckl)391:64–72[CrossRef]
    [Google Scholar]
  27. Newton M. A., Raftery A. E.. 1994; Approximate bayesian inference with the weighted likelihood bootstrap. J Roy Statist Soc Ser B56:3–48
    [Google Scholar]
  28. Posada D., Crandall K. A.. 2001; Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A98:13757–13762 [CrossRef][PubMed]
    [Google Scholar]
  29. Posada D.. 2008; jModelTest: phylogenetic model averaging. Mol Biol Evol25:1253–1256 [CrossRef][PubMed]
    [Google Scholar]
  30. Sawyer S.. 1999; GENECONV: A computer package for the statistical detection of gene conversion. Washington University in St Louis: Distributed by the author, Department of Mathematics;
    [Google Scholar]
  31. Sled J. G., Zijdenbos A. P., Evans A. C.. 1998; A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging17:87–97 [CrossRef][PubMed]
    [Google Scholar]
  32. Smith J. M.. 1992; Analyzing the mosaic structure of genes. J Mol Evol34:126–129[PubMed]
    [Google Scholar]
  33. Söderholm J., Ahlén G., Kaul A., Frelin L., Alheim M., Barnfield C., Liljeström P., Weiland O., Milich D. R.. 2006; Relation between viral fitness and immune escape within the hepatitis C virus protease. Gut55:266–274 [CrossRef][PubMed]
    [Google Scholar]
  34. Tamura K., Dudley J., Nei M., Kumar S.. 2007; MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  35. Thor S. W., Hilt D. A., Kissinger J. C., Paterson A. H., Jackwood M. W.. 2011; Recombination in avian gamma-coronavirus infectious bronchitis virus. Viruses3:1777–1799 [CrossRef][PubMed]
    [Google Scholar]
  36. Thorne J. L., Kishino H., Painter I. S.. 1998; Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol15:1647–1657[PubMed][CrossRef]
    [Google Scholar]
  37. Wang C. H., Huang Y. C.. 2000; Relationship between serotypes and genotypes based on the hypervariable region of the S1 gene of infectious bronchitis virus. Arch Virol145:291–300[PubMed][CrossRef]
    [Google Scholar]
  38. Wang H., Wang X. Y., Zheng H. H., Cao J. Y., Zhou W. T., Bi S. L.. 2015; Evolution and genetic characterization of hepatitis A virus isolates in China. Int J Infect Dis33:156–158 [CrossRef][PubMed]
    [Google Scholar]
  39. Wang Y. D., Wang Y. L., Zhang Z. C., Fan G. C., Jiang Y. H., Liu X. E.. 1998; Isolation and identification of glandular stomach type IBV (QX IBV) in chickens. Chinese J Anim Quarant15:1–3
    [Google Scholar]
  40. Zeng F., Chow K. Y., Leung F. C.. 2003; Estimated timing of the last common ancestor of the SARS coronavirus. N Engl J Med349:2469–2470 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000464
Loading
/content/journal/jgv/10.1099/jgv.0.000464
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error