1887

Abstract

are a family of insect RNA viruses that diverged profoundly from other families of the . Mesonivirus replicative proteins are produced from large polyprotein (pp) precursors (pp1a and pp1ab) through proteolytic cleavage by the viral 3C-like protease (3CL) and, possibly, other proteases. Using recombinant forms of the Cavally virus 3CL and pp1a/pp1ab-derived substrates, we characterized 3CL cleavage sites in mesonivirus polyproteins. Our data lead us to suggest that 3CL cleaves the central and C-proximal regions of mesonivirus pp1a/pp1ab at 12 conserved sites. Compared to other nidovirus homologues, the mesonivirus 3CL features a distinct substrate specificity, with asparagine at P2 being a major specificity determinant. Furthermore, we provide evidence that expression of the ORF1b-encoded part of pp1ab involves a −1 ribosomal frameshift at a conserved GGAUUUU heptanucleotide sequence in the ORF1a/1b overlap region. Taken together, the study identifies critical steps in the expression and maturation of mesonivirus replicative proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000458
2016-06-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/6/1439.html?itemId=/content/journal/jgv/10.1099/jgv.0.000458&mimeType=html&fmt=ahah

References

  1. Blanck S., Stinn A., Tsiklauri L., Zirkel F., Junglen S., Ziebuhr J.. 2014; Characterization of an alphamesonivirus 3C-like protease defines a special group of nidovirus main proteases. J Virol88:13747–13758 [CrossRef][PubMed]
    [Google Scholar]
  2. Brierley I.. 1995; Ribosomal frameshifting viral RNAs. J Gen Virol76:1885–1892 [CrossRef][PubMed]
    [Google Scholar]
  3. Brierley I., Boursnell M. E., Binns M. M., Bilimoria B., Blok V. C., Brown T. D., Inglis S. C.. 1987; An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J6:3779–3785[PubMed]
    [Google Scholar]
  4. Brierley I., Digard P., Inglis S. C.. 1989; Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell57:537–547 [CrossRef][PubMed]
    [Google Scholar]
  5. Cowley J. A., Dimmock C. M., Spann K. M., Walker P. J.. 2000; Gill-associated virus of Penaeus monodon prawns: an invertebrate virus with ORF1a and ORF1b genes related to arteri- and coronaviruses. J Gen Virol81:1473–1484 [CrossRef][PubMed]
    [Google Scholar]
  6. de Groot R. J., Baker S. C., Baric R., Enjuanes L., Gorbalenya A. E., Holmes K. V., Perlman S., Poon L., Rottier P. J. M., other authors. 2012a; Family Coronaviridae. In Virus Taxonomy pp.806–828 Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J.. Amsterdam: Elsevier;
    [Google Scholar]
  7. de Groot R. J., Cowley J. A., Enjuanes L., Faaberg K. S., Perlman S., Rottier P. J. M., Snijder E. J., Ziebuhr J., Gorbalenya A. E.. 2012b; Order Nidovirales. In Virus Taxonomy pp.785–795 Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J.. Amsterdam: Elsevier;
    [Google Scholar]
  8. Gorbalenya A. E., Koonin E. V.. 1993; Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol3:419–429 [CrossRef]
    [Google Scholar]
  9. Gorbalenya A. E., Enjuanes L., Ziebuhr J., Snijder E. J.. 2006; Nidovirales: evolving the largest RNA virus genome. Virus Res117:17–37 [CrossRef][PubMed]
    [Google Scholar]
  10. Herold J., Siddell S. G.. 1993; An 'elaborated' pseudoknot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA. Nucleic Acids Res21:5838–5842 [CrossRef][PubMed]
    [Google Scholar]
  11. Lauber C., Ziebuhr J., Junglen S., Drosten C., Zirkel F., Nga P. T., Morita K., Snijder E. J., Gorbalenya A. E.. 2012; Mesoniviridae: a proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses. Arch Virol157:1623–1628 [CrossRef][PubMed]
    [Google Scholar]
  12. Lauber C., Goeman J. J., Parquet M. C., Nga P. T., Snijder E. J., Morita K., Gorbalenya A. E.. 2013; The footprint of genome architecture in the largest genome expansion in RNA viruses. PLoS Pathog9:e1003500 [CrossRef][PubMed]
    [Google Scholar]
  13. Lehmann K. C., Gulyaeva A., Zevenhoven-Dobbe J. C., Janssen G. M., Ruben M., Overkleeft H. S., van Veelen P. A., Samborskiy D. V., Kravchenko A. A., other authors. 2015; Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses. Nucleic Acids Res43:8416–8434 [CrossRef][PubMed]
    [Google Scholar]
  14. Nga P. T., Parquet M. C., Lauber C., Parida M., Nabeshima T., Yu F., Thuy N. T., Inoue S., Ito T., other authors. 2011; Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes. PLoS Pathog7:e1002215 [CrossRef][PubMed]
    [Google Scholar]
  15. Robert X., Gouet P.. 2014; Deciphering key features in protein structures with the new endscript server. Nucleic Acids Res42:W320–W324 [CrossRef][PubMed]
    [Google Scholar]
  16. Schechter I., Berger A.. 1967; On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun27:157–162 [CrossRef][PubMed]
    [Google Scholar]
  17. Schneider T. D., Stephens R. M.. 1990; Sequence logos: a new way to display consensus sequences. Nucleic Acids Res18:6097–6100 [CrossRef][PubMed]
    [Google Scholar]
  18. Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., other authors. 2011; Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol7:539 [CrossRef][PubMed]
    [Google Scholar]
  19. Smits S. L., Snijder E. J., de Groot R. J.. 2006; Characterization of a torovirus main proteinase. J Virol80:4157–4167 [CrossRef][PubMed]
    [Google Scholar]
  20. Snijder E. J., Bredenbeek P. J., Dobbe J. C., Thiel V., Ziebuhr J., Poon L. L., Guan Y., Rozanov M., Spaan W. J., Gorbalenya A. E.. 2003; Unique and conserved features of genome and proteome of sars-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol331:991–1004 [CrossRef][PubMed]
    [Google Scholar]
  21. Snijder E. J., Kikkert M., Fang Y.. 2013; Arterivirus molecular biology and pathogenesis. J Gen Virol94:2141–2163 [CrossRef][PubMed]
    [Google Scholar]
  22. van der Hoek L., Pyrc K., Jebbink M. F., Vermeulen-Oost W., Berkhout R. J., Wolthers K. C., Wertheim-van Dillen P. M., Kaandorp J., Spaargaren J., Berkhout B.. 2004; Identification of a new human coronavirus. Nat Med10:368–373 [CrossRef][PubMed]
    [Google Scholar]
  23. Vasilakis N., Guzman H., Firth C., Forrester N. L., Widen S. G., Wood T. G., Rossi S. L., Ghedin E., Popov V., other authors. 2014; Mesoniviruses are mosquito-specific viruses with extensive geographic distribution and host range. Virol J11,:97 [CrossRef][PubMed]
    [Google Scholar]
  24. Warrilow D., Watterson D., Hall R. A., Davis S. S., Weir R., Kurucz N., Whelan P., Allcock R., Hall-Mendelin S., other authors. 2014; A new species of mesonivirus from the northern territory, Australia. PLoS One9:e91103 [CrossRef][PubMed]
    [Google Scholar]
  25. Woo P. C. Y., Huang Y., Lau S. K. P., Tsoi H. W., Yuen K. Y.. 2005a; In silico analysis of orf1ab in coronavirus HKU1 genome reveals a unique putative cleavage site of coronavirus HKU1 3C-like protease. Microbiol Immunol49:899–908 [CrossRef][PubMed]
    [Google Scholar]
  26. Woo P. C., Lau S. K., Chu C. M., Chan K. H., Tsoi H. W., Huang Y., Wong B. H., Poon R. W., Cai J. J., other authors. 2005b; Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol79:884–895 [CrossRef]
    [Google Scholar]
  27. Zhao L., Jha B. K., Wu A., Elliott R., Ziebuhr J., Gorbalenya A. E., Silverman R. H., Weiss S. R.. 2012; Antagonism of the interferon-induced oas-RNAse L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology. Cell Host Microbe11:607–616 [CrossRef][PubMed]
    [Google Scholar]
  28. Ziebuhr J., Snijder E. J., Gorbalenya A. E.. 2000; Virus-encoded proteinases and proteolytic processing in the nidovirales. J Gen Virol81:853–879 [CrossRef][PubMed]
    [Google Scholar]
  29. Ziebuhr J., Bayer S., Cowley J. A., Gorbalenya A. E.. 2003; The 3C-like proteinase of an invertebrate nidovirus links coronavirus and potyvirus homologs. J Virol77:1415–1426 [CrossRef][PubMed]
    [Google Scholar]
  30. Zirkel F., Kurth A., Quan P. L., Briese T., Ellerbrok H., Pauli G., Leendertz F. H., Lipkin W. I., Ziebuhr J., other authors. 2011; An insect nidovirus emerging from a primary tropical rainforest. MBio2:e00077-11 [CrossRef][PubMed]
    [Google Scholar]
  31. Zirkel F., Roth H., Kurth A., Drosten C., Ziebuhr J., Junglen S.. 2013; Identification and characterization of genetically divergent members of the newly established family mesoniviridae. J Virol87:6346–6358 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000458
Loading
/content/journal/jgv/10.1099/jgv.0.000458
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error