1887

Abstract

Mesoniviridae are a family of insect RNA viruses that diverged profoundly from other families of the Nidovirales. Mesonivirus replicative proteins are produced from large polyprotein (pp) precursors (pp1a and pp1ab) through proteolytic cleavage by the viral 3C-like protease (3CL) and, possibly, other proteases. Using recombinant forms of the Cavally virus 3CL and pp1a/pp1ab-derived substrates, we characterized 3CL cleavage sites in mesonivirus polyproteins. Our data lead us to suggest that 3CL cleaves the central and C-proximal regions of mesonivirus pp1a/pp1ab at 12 conserved sites. Compared to other nidovirus homologues, the mesonivirus 3CL features a distinct substrate specificity, with asparagine at P2 being a major specificity determinant. Furthermore, we provide evidence that expression of the ORF1b-encoded part of pp1ab involves a −1 ribosomal frameshift at a conserved GGAUUUU heptanucleotide sequence in the ORF1a/1b overlap region. Taken together, the study identifies critical steps in the expression and maturation of mesonivirus replicative proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000458
2016-06-23
2019-09-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/6/1439.html?itemId=/content/journal/jgv/10.1099/jgv.0.000458&mimeType=html&fmt=ahah

References

  1. Blanck S., Stinn A., Tsiklauri L., Zirkel F., Junglen S., Ziebuhr J..( 2014;). Characterization of an alphamesonivirus 3C-like protease defines a special group of nidovirus main proteases. . J Virol 88: 13747–13758. [CrossRef] [PubMed]
    [Google Scholar]
  2. Brierley I..( 1995;). Ribosomal frameshifting viral RNAs. . J Gen Virol 76: 1885–1892. [CrossRef] [PubMed]
    [Google Scholar]
  3. Brierley I., Boursnell M. E., Binns M. M., Bilimoria B., Blok V. C., Brown T. D., Inglis S. C..( 1987;). An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. . EMBO J 6: 3779–3785.[PubMed] [Crossref]
    [Google Scholar]
  4. Brierley I., Digard P., Inglis S. C..( 1989;). Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. . Cell 57: 537–547. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cowley J. A., Dimmock C. M., Spann K. M., Walker P. J..( 2000;). Gill-associated virus of Penaeus monodon prawns: an invertebrate virus with ORF1a and ORF1b genes related to arteri- and coronaviruses. . J Gen Virol 81: 1473–1484. [CrossRef] [PubMed]
    [Google Scholar]
  6. de Groot R. J., Baker S. C., Baric R., Enjuanes L., Gorbalenya A. E., Holmes K. V., Perlman S., Poon L., Rottier P. J. M., other authors.. ( 2012a;). Family Coronaviridae. . In Virus Taxonomy. pp. 806–828. Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J.. Amsterdam:: Elsevier;.
    [Google Scholar]
  7. de Groot R. J., Cowley J. A., Enjuanes L., Faaberg K. S., Perlman S., Rottier P. J. M., Snijder E. J., Ziebuhr J., Gorbalenya A. E..( 2012b;). Order Nidovirales. . In Virus Taxonomy. pp. 785–795. Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J.. Amsterdam:: Elsevier;.
    [Google Scholar]
  8. Gorbalenya A. E., Koonin E. V..( 1993;). Helicases: amino acid sequence comparisons and structure-function relationships. . Curr Opin Struct Biol 3: 419–429. [CrossRef]
    [Google Scholar]
  9. Gorbalenya A. E., Enjuanes L., Ziebuhr J., Snijder E. J..( 2006;). Nidovirales: evolving the largest RNA virus genome. . Virus Res 117: 17–37. [CrossRef] [PubMed]
    [Google Scholar]
  10. Herold J., Siddell S. G..( 1993;). An 'elaborated' pseudoknot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA. . Nucleic Acids Res 21: 5838–5842. [CrossRef] [PubMed]
    [Google Scholar]
  11. Lauber C., Ziebuhr J., Junglen S., Drosten C., Zirkel F., Nga P. T., Morita K., Snijder E. J., Gorbalenya A. E..( 2012;). Mesoniviridae: a proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses. . Arch Virol 157: 1623–1628. [CrossRef] [PubMed]
    [Google Scholar]
  12. Lauber C., Goeman J. J., Parquet M. C., Nga P. T., Snijder E. J., Morita K., Gorbalenya A. E..( 2013;). The footprint of genome architecture in the largest genome expansion in RNA viruses. . PLoS Pathog 9: e1003500. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lehmann K. C., Gulyaeva A., Zevenhoven-Dobbe J. C., Janssen G. M., Ruben M., Overkleeft H. S., van Veelen P. A., Samborskiy D. V., Kravchenko A. A., other authors.( 2015;). Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses. . Nucleic Acids Res 43: 8416–8434. [CrossRef] [PubMed]
    [Google Scholar]
  14. Nga P. T., Parquet M. C., Lauber C., Parida M., Nabeshima T., Yu F., Thuy N. T., Inoue S., Ito T., other authors.( 2011;). Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes. . PLoS Pathog 7: e1002215. [CrossRef] [PubMed]
    [Google Scholar]
  15. Robert X., Gouet P..( 2014;). Deciphering key features in protein structures with the new endscript server. . Nucleic Acids Res 42: W320–W324. [CrossRef] [PubMed]
    [Google Scholar]
  16. Schechter I., Berger A..( 1967;). On the size of the active site in proteases. I. Papain. . Biochem Biophys Res Commun 27: 157–162. [CrossRef] [PubMed]
    [Google Scholar]
  17. Schneider T. D., Stephens R. M..( 1990;). Sequence logos: a new way to display consensus sequences. . Nucleic Acids Res 18: 6097–6100. [CrossRef] [PubMed]
    [Google Scholar]
  18. Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., other authors.( 2011;). Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. . Mol Syst Biol 7: 539. [CrossRef] [PubMed]
    [Google Scholar]
  19. Smits S. L., Snijder E. J., de Groot R. J..( 2006;). Characterization of a torovirus main proteinase. . J Virol 80: 4157–4167. [CrossRef] [PubMed]
    [Google Scholar]
  20. Snijder E. J., Bredenbeek P. J., Dobbe J. C., Thiel V., Ziebuhr J., Poon L. L., Guan Y., Rozanov M., Spaan W. J., Gorbalenya A. E..( 2003;). Unique and conserved features of genome and proteome of sars-coronavirus, an early split-off from the coronavirus group 2 lineage. . J Mol Biol 331: 991–1004. [CrossRef] [PubMed]
    [Google Scholar]
  21. Snijder E. J., Kikkert M., Fang Y..( 2013;). Arterivirus molecular biology and pathogenesis. . J Gen Virol 94: 2141–2163. [CrossRef] [PubMed]
    [Google Scholar]
  22. van der Hoek L., Pyrc K., Jebbink M. F., Vermeulen-Oost W., Berkhout R. J., Wolthers K. C., Wertheim-van Dillen P. M., Kaandorp J., Spaargaren J., Berkhout B..( 2004;). Identification of a new human coronavirus. . Nat Med 10: 368–373. [CrossRef] [PubMed]
    [Google Scholar]
  23. Vasilakis N., Guzman H., Firth C., Forrester N. L., Widen S. G., Wood T. G., Rossi S. L., Ghedin E., Popov V., other authors.( 2014;). Mesoniviruses are mosquito-specific viruses with extensive geographic distribution and host range. . Virol J 11,: 97. [CrossRef] [PubMed]
    [Google Scholar]
  24. Warrilow D., Watterson D., Hall R. A., Davis S. S., Weir R., Kurucz N., Whelan P., Allcock R., Hall-Mendelin S., other authors.( 2014;). A new species of mesonivirus from the northern territory, Australia. . PLoS One 9: e91103. [CrossRef] [PubMed]
    [Google Scholar]
  25. Woo P. C. Y., Huang Y., Lau S. K. P., Tsoi H. W., Yuen K. Y..( 2005a;). In silico analysis of orf1ab in coronavirus HKU1 genome reveals a unique putative cleavage site of coronavirus HKU1 3C-like protease. . Microbiol Immunol 49: 899–908. [CrossRef] [PubMed]
    [Google Scholar]
  26. Woo P. C., Lau S. K., Chu C. M., Chan K. H., Tsoi H. W., Huang Y., Wong B. H., Poon R. W., Cai J. J., other authors.( 2005b;). Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. . J Virol 79: 884–895. [CrossRef]
    [Google Scholar]
  27. Zhao L., Jha B. K., Wu A., Elliott R., Ziebuhr J., Gorbalenya A. E., Silverman R. H., Weiss S. R..( 2012;). Antagonism of the interferon-induced oas-RNAse L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology. . Cell Host Microbe 11: 607–616. [CrossRef] [PubMed]
    [Google Scholar]
  28. Ziebuhr J., Snijder E. J., Gorbalenya A. E..( 2000;). Virus-encoded proteinases and proteolytic processing in the nidovirales. . J Gen Virol 81: 853–879. [CrossRef] [PubMed]
    [Google Scholar]
  29. Ziebuhr J., Bayer S., Cowley J. A., Gorbalenya A. E..( 2003;). The 3C-like proteinase of an invertebrate nidovirus links coronavirus and potyvirus homologs. . J Virol 77: 1415–1426. [CrossRef] [PubMed]
    [Google Scholar]
  30. Zirkel F., Kurth A., Quan P. L., Briese T., Ellerbrok H., Pauli G., Leendertz F. H., Lipkin W. I., Ziebuhr J., other authors.( 2011;). An insect nidovirus emerging from a primary tropical rainforest. . MBio 2: e00077-11. [CrossRef] [PubMed]
    [Google Scholar]
  31. Zirkel F., Roth H., Kurth A., Drosten C., Ziebuhr J., Junglen S..( 2013;). Identification and characterization of genetically divergent members of the newly established family mesoniviridae. . J Virol 87: 6346–6358. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000458
Loading
/content/journal/jgv/10.1099/jgv.0.000458
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error