1887

Abstract

Influenza A virus (subtype H3N2) causes seasonal human influenza and is included as a component of influenza vaccines. The majority of vaccine viruses are isolated and propagated in eggs, which commonly results in amino acid substitutions in the haemagglutinin (HA) glycoprotein. These substitutions can affect virus receptor-binding and alter virus antigenicity, thereby, obfuscating the choice of egg-propagated viruses for development into candidate vaccine viruses. To evaluate the effects of egg-adaptive substitutions seen in H3N2 vaccine viruses on sialic acid receptor-binding, we carried out quantitative measurement of virus receptor-binding using surface biolayer interferometry with haemagglutination inhibition (HI) assays to correlate changes in receptor avidity with antigenic properties. Included in these studies was a panel of H3N2 viruses generated by reverse genetics containing substitutions seen in recent egg-propagated vaccine viruses and corresponding cell culture-propagated wild-type viruses. These assays provide a quantitative approach to investigating the importance of individual amino acid substitutions in influenza receptor-binding. Results show that viruses with egg-adaptive HA substitutions R156Q, S219Y, and I226N, have increased binding avidity to α2,3-linked receptor-analogues and decreased binding avidity to α2,6-linked receptor-analogues. No measurable binding was detected for the viruses with amino acid substitution combination 156Q+219Y and receptor-binding increased in viruses where egg-adaptation mutations were introduced into cell culture-propagated virus. Substitutions at positions 156 and 190 appeared to be primarily responsible for low reactivity in HI assays with post-infection ferret antisera raised against 2012–2013 season H3N2 viruses. Egg-adaptive substitutions at position 186 caused substantial differences in binding avidity with an insignificant effect on antigenicity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000457
2016-06-15
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/6/1333.html?itemId=/content/journal/jgv/10.1099/jgv.0.000457&mimeType=html&fmt=ahah

References

  1. Aich U., Beckley N., Shriver Z., Raman R., Viswanathan K., Hobbie S., Sasisekharan R..( 2011;). Glycomics-based analysis of chicken red blood cells provides insight into the selectivity of the viral agglutination assay. . FEBS J 278: 1699–1712. [CrossRef] [PubMed]
    [Google Scholar]
  2. Air G. M..( 2014;). Influenza virus-glycan interactions. . Curr Opin Virol 7: 128–133. [CrossRef] [PubMed]
    [Google Scholar]
  3. Appiah G. D., Blanton L., D'Mello T., Kniss K., Smith S., Mustaquim D., Steffens C., Dhara R., Cohen J. et al.( 2015;). Influenza activity - United States, 2014-15 season and composition of the 2015-16 influenza vaccine. . Mor Mortal Week Rep 64: 583–590.
    [Google Scholar]
  4. Barman S., Franks J., Turner J. C., Yoon S. W., Webster R. G., Webby R. J..( 2015;). Egg-adaptive mutations in H3N2v vaccine virus enhance egg-based production without loss of antigenicity or immunogenicity. . Vaccine 33: 3186–3192. [CrossRef] [PubMed]
    [Google Scholar]
  5. Barr I. G., Russell C., Besselaar T. G., Cox N. J., Daniels R. S., Donis R., Engelhardt O. G., Grohmann G., Itamura S. et al.( 2014;). WHO recommendations for the viruses used in the 2013-2014 Northern Hemisphere influenza vaccine: Epidemiology, antigenic and genetic characteristics of influenza A(H1N1)pdm09, A(H3N2) and B influenza viruses collected from October 2012 to January 2013. . Vaccine 32: 4713–4725. [CrossRef] [PubMed]
    [Google Scholar]
  6. Barrett P. N., Portsmouth D., Ehrlich H. J..( 2013;). Vero cell culture-derived pandemic influenza vaccines: preclinical and clinical development. . Expert Rev Vaccines 12: 395–413. [CrossRef]
    [Google Scholar]
  7. Benton D. J., Martin S. R., Wharton S. A., McCauley J. W..( 2015;). Biophysical measurement of the balance of influenza a hemagglutinin and neuraminidase activities. . J Biol Chem 290: 6516–6521. [CrossRef] [PubMed]
    [Google Scholar]
  8. Blackburne B. P., Hay A. J., Goldstein R. A..( 2008;). Changing selective pressure during antigenic changes in human influenza H3. . PLoS Pathog 4: e1000058. [CrossRef] [PubMed]
    [Google Scholar]
  9. Broberg E., Snacken R., Adlhoch C., Beauté J., Galinska M., Pereyaslov D., Brown C., Penttinen P.. WHO European Region and the European Influenza Surveillance Network( 2015;). Start of the 2014/15 influenza season in Europe: drifted influenza A(H3N2) viruses circulate as dominant subtype. . Euro Surveill 20:. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chambers B. S., Li Y., Hodinka R. L., Hensley S. E..( 2014;). Recent H3N2 influenza virus clinical isolates rapidly acquire hemagglutinin or neuraminidase mutations when propagated for antigenic analyses. . J Virol 88: 10986–10989. [CrossRef] [PubMed]
    [Google Scholar]
  11. Chen Z., Zhou H., Jin H..( 2010;). The impact of key amino acid substitutions in the hemagglutinin of influenza A (H3N2) viruses on vaccine production and antibody response. . Vaccine 28: 4079–4085. [CrossRef] [PubMed]
    [Google Scholar]
  12. Cherry J. L., Lipman D. J., Nikolskaya A., Wolf Y. I..( 2009;). Evolutionary dynamics of N-glycosylation sites of influenza virus hemagglutinin. . PLoS Curr 1: RRN1001. [CrossRef] [PubMed]
    [Google Scholar]
  13. Daniels R. S., Douglas A. R., Skehel J. J., Wiley D. C..( 1983;). Analyses of the antigenicity of influenza haemagglutinin at the pH optimum for virus-mediated membrane fusion. . J General Virol 64: 1657–1662. [CrossRef]
    [Google Scholar]
  14. Daniels R. S., Douglas A. R., Skehel J. J., Wiley D. C., Naeve C. W., Webster R. G., Rogers G. N., Paulson J. C..( 1984;). Antigenic analyses of influenza virus haemagglutinins with different receptor-binding specificities. . Virol 138: 174–177. [CrossRef]
    [Google Scholar]
  15. Donis R. O., Davis C. T., Foust A., Hossain M. J., Johnson A., Klimov A., Loughlin R., Xu X., Tsai T. et al.( 2014;). Performance characteristics of qualified cell lines for isolation and propagation of influenza viruses for vaccine manufacturing. . Vaccine 32: 6583–6590. [CrossRef] [PubMed]
    [Google Scholar]
  16. Dormitzer P. R..( 2015;). Rapid production of synthetic influenza vaccines. . Cur Topics Microbiol Immun 386: 237–273.
    [Google Scholar]
  17. Dormitzer P. R., Suphaphiphat P., Gibson D. G., Wentworth D. E., Stockwell T. B., Algire M. A., Alperovich N., Barro M., Brown D. M. et al.( 2013;). Synthetic generation of influenza vaccine viruses for rapid response to pandemics. . Sci Trans Med 5: 185ra168. [CrossRef]
    [Google Scholar]
  18. Doroshenko A., Halperin S. A..( 2009;). Trivalent MDCK cell culture-derived influenza vaccine Optaflu (Novartis Vaccines). . Expert Rev Vaccines 8: 679–688. [CrossRef] [PubMed]
    [Google Scholar]
  19. Flannery B., Thaker S. N., Clippard J., Monto A. S., Ohmit S. E., Zimmerman R. K., Nowalk M. P., Gaglani M., Jackson M. L. et al.( 2013;). Interim adjusted estimates of seasonal influenza vaccine effectiveness - United States. . In MMWR Morbidity and Mortality Weekly Report, pp. 119–123.
    [Google Scholar]
  20. Gambaryan A. S., Robertson J. S., Matrosovich M. N..( 1999;). Effects of egg-adaptation on the receptor-binding properties of human influenza A and B viruses. . Virol 258: 232–239. [CrossRef]
    [Google Scholar]
  21. Glaser L., Stevens J., Zamarin D., Wilson I. A., García-Sastre A., Tumpey T. M., Basler C. F., Taubenberger J. K., Palese P..( 2005;). A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. . J Virol 79: 11533–11536. [CrossRef] [PubMed]
    [Google Scholar]
  22. Gulati S., Smith D. F., Cummings R. D., Couch R. B., Griesemer S. B., St George K., Webster R. G., Air G. M..( 2013;). Human H3N2 influenza viruses isolated from 1968 to 2012 show varying preference for receptor substructures with no apparent consequences for disease or spread. . PLoS One 8: e66325. [CrossRef] [PubMed]
    [Google Scholar]
  23. Hensley S. E., Das S. R., Bailey A. L., Schmidt L. M., Hickman H. D., Jayaraman A., Viswanathan K., Raman R., Sasisekharan R. et al.( 2009;). Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. . Science 326: 734–736. [CrossRef]
    [Google Scholar]
  24. Hoffmann E., Neumann G., Kawaoka Y., Hobom G., Webster R. G..( (editors)) ( 2000;). A DNA transfection system for generation of influenza A virus from eight plasmids. . Proc the Nat Academy Sci 97: 6108–6113. [CrossRef]
    [Google Scholar]
  25. Ito T., Suzuki Y., Mitnaul L., Vines A., Kida H., Kawaoka Y..( 1997;). Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. . Virol 227: 493–499. [CrossRef]
    [Google Scholar]
  26. Katz J. M., Webster R. G..( 1992;). Amino acid sequence identity between the HA1 of influenza A (H3N2) viruses grown in mammalian and primary chick kidney cells. . J Gen Virol 73 Pt 5: 1159–1165. [CrossRef] [PubMed]
    [Google Scholar]
  27. Katz J. M., Wang M., Webster R. G..( 1990;). Direct sequencing of the HA gene of influenza (H3N2) virus in original clinical samples reveals sequence identity with mammalian cell-grown virus. . J Virol 64: 1808–1811.[PubMed]
    [Google Scholar]
  28. Kobayashi Y., Suzuki Y..( 2012;). Evidence for N-glycan shielding of antigenic sites during evolution of human influenza A virus hemagglutinin. . J Virol 86: 3446–3451. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kodihalli S., Justewicz D. M., Gubareva L. V., Webster R. G..( 1995;). Selection of a single amino acid substitution in the hemagglutinin molecule by chicken eggs can render influenza A virus (H3) candidate vaccine ineffective. . J Virol 69: 4888–4897.[PubMed]
    [Google Scholar]
  30. Koel, Burke D. F., Bestebroer T. M., van der Vliet S., Zondag G. C., Vervaet G., Skepner E., Lewis N. S., Spronken M. I. et al.( 2013;). Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. . Science 342: 976–979. [CrossRef] [PubMed]
    [Google Scholar]
  31. Lin Y. P., Gregory V., Collins P., Kloess J., Wharton S., Cattle N., Lackenby A., Daniels R., Hay A..( 2010;). Neuraminidase receptor binding variants of human influenza A(H3N2) viruses resulting from substitution of aspartic acid 151 in the catalytic site: a role in virus attachment?. J Virol 84: 6769–6781. [CrossRef] [PubMed]
    [Google Scholar]
  32. Lin Y. P., Xiong X., Wharton S. A., Martin S. R., Coombs P. J., Vachieri S. G., Christodoulou E., Walker P. A., Liu J. et al.( 2012;). Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin. . Proc Natl Acad Sci U S A 109: 21474–21479. [CrossRef] [PubMed]
    [Google Scholar]
  33. Long J., Bushnell R. V., Tobin J. K., Pan K., Deem M. W., Nara P. L., Tobin G. J..( 2011;). Evolution of H3N2 influenza virus in a guinea pig model. . PLoS One 6: e20130. [CrossRef] [PubMed]
    [Google Scholar]
  34. Lu B., Zhou H., Chan W., Kemble G., Jin H..( 2006;). Single amino acid substitutions in the hemagglutinin of influenza A/Singapore/21/04 (H3N2) increase virus growth in embryonated chicken eggs. . Vaccine 24: 6691–6693. [CrossRef] [PubMed]
    [Google Scholar]
  35. Lu B., Zhou H., Ye D., Kemble G., Jin H..( 2005;). Improvement of influenza a/fujian/411/02 (H3N2) virus growth in embryonated chicken eggs by balancing the hemagglutinin and neuraminidase activities, using reverse genetics. . J Virol 79: 6763–6771. [CrossRef] [PubMed]
    [Google Scholar]
  36. Matrosovich M., Matrosovich T., Carr J., Roberts N. A., Klenk H. D..( 2003;). Overexpression of the alpha-2,6-sialyltransferase in MDCK cells increases influenza virus sensitivity to neuraminidase inhibitors. . J Virol 77: 8418–8425. [CrossRef] [PubMed]
    [Google Scholar]
  37. Matrosovich M., Tuzikov A., Bovin N., Gambaryan A., Klimov A., Castrucci M. R., Donatelli I., Kawaoka Y..( 2000;). Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. . J Virol 74: 8502–8512. [CrossRef] [PubMed]
    [Google Scholar]
  38. Medeiros R., Escriou N., Naffakh N., Manuguerra J. -C., van der Werf S..( 2001;). Hemagglutinin residues of recent human A(H3N2) influenza viruses that contribute to the inability to agglutinate chicken erythrocytes. . Virol 289: 74–85. [CrossRef]
    [Google Scholar]
  39. Meyer W. J., Wood J. M., Major D., Robertson J. S., Webster R. G., Katz J. M..( 1993;). Influence of host cell-mediated variation on the international surveillance of influenza A (H3N2) viruses. . J Virol 196: 130–137. [CrossRef]
    [Google Scholar]
  40. Naeve C. W., Hinshaw V. S., Webster R. G..( 1984;). Mutations in the hemagglutinin receptor-binding site can change the biological properties of an influenza virus. . J Virol 51: 567–569.[PubMed]
    [Google Scholar]
  41. Ndifon W..( 2011;). New methods for analyzing serological data with applications to influenza surveillance. . Influenza Other Res Virus 5: 206–212. [CrossRef]
    [Google Scholar]
  42. Nobusawa E., Ishihara H., Morishita T., Sato K., Nakajima K..( 2000;). Change in receptor-binding specificity of recent human influenza A viruses (H3N2): a single amino acid change in hemagglutinin altered its recognition of sialyloligosaccharides. . Virol 278: 587–596. [CrossRef]
    [Google Scholar]
  43. Office for National Statistics( 2015;). Statistical Bulletin: Excess Winter Mortality in England and Wales, 2014/15 (Provisional) and 2013/14 (Final) 25/11/2015. . The National Archives.
    [Google Scholar]
  44. Oh D. Y., Barr I. G., Mosse J. A., Laurie K. L..( 2008;). MDCK-SIAT1 cells show improved isolation rates for recent human influenza viruses compared to conventional MDCK cells. . J Clin Microbiol 46: 2189–2194. [CrossRef] [PubMed]
    [Google Scholar]
  45. Pan K., Long J., Sun H., Tobin G. J., Nara P. L., Deem M. W..( 2011;). Selective pressure to increase charge in immunodominant epitopes of the H3 hemagglutinin influenza protein. . J Mol Evol 72: 90–103. [CrossRef] [PubMed]
    [Google Scholar]
  46. Perdue M. L., Arnold F., Li S., Donabedian A., Cioce V., Warf T., Huebner R..( 2011;). The future of cell culture-based influenza vaccine production. . Exp Rev Vaccines 10: 1183–1194. [CrossRef]
    [Google Scholar]
  47. Robertson J. S., Bootman J. S., Newman R., Oxford J. S., Daniels R. S., Webster R. G., Schild G. C..( 1987;). Structural changes in the haemagglutinin which accompany egg adaptation of an influenza A(H1N1) virus. . Virol 160: 31–37. [CrossRef]
    [Google Scholar]
  48. Robertson J. S., Naeve C. W., Webster R. G., Bootman J. S., Newman R., Schild G. C..( 1985;). Alterations in the hemagglutinin associated with adaptation of influenza B virus to growth in eggs. . Virology 143: 166–174. [CrossRef]
    [Google Scholar]
  49. Rocha E. P., Xu X., Hall H. E., Allen J. R., Regnery H. L., Cox N. J..( 1993;). Comparison of 10 influenza A (H1N1 and H3N2) haemagglutinin sequences obtained directly from clinical specimens to those of MDCK cell- and egg-grown viruses. . J Gen Virol 74: 2513–2518. [CrossRef] [PubMed]
    [Google Scholar]
  50. Rogers G. N., Paulson J. C., Daniels R. S., Skehel J. J., Wilson I. A., Wiley D. C..( 1983;). Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. . Nature 304: 76–78. [CrossRef]
    [Google Scholar]
  51. Schild G. C., Oxford J. S., de Jong J. C., Webster R. G..( 1983;). Evidence for host-cell selection of influenza virus antigenic variants. . Nature 303: 706–709. [CrossRef]
    [Google Scholar]
  52. Skehel J. J., Wiley D. C..( 2000;). Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. . Annu Rev Biochem 69: 531–569. [CrossRef] [PubMed]
    [Google Scholar]
  53. Skehel J. J., Stevens D. J., Daniels R. S., Douglas A. R., Knossow M., Wilson I. A., Wiley D. C..( 1984;). A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. . Proc Natl Acad Sci U S A 81: 1779–1783.[Crossref]
    [Google Scholar]
  54. Skowronski D. M., Janjua N. Z., De Serres G., Dickinson J. A., Winter A. L., Mahmud S. M., Sabaiduc S., Gubbay J. B., Charest H. et al.( 2013;). Interim estimates of influenza vaccine effectiveness in 2012/13 from Canada's sentinel surveillance network, January 2013. . Euro Sur 18:.
    [Google Scholar]
  55. Skowronski D. M., Janjua N. Z., De Serres G., Sabaiduc S., Eshaghi A., Dickinson J. A., Fonseca K., Winter A. L., Gubbay J. B. et al.( 2014;). Low 2012-13 influenza vaccine effectiveness associated with mutation in the egg-adapted H3N2 vaccine strain not antigenic drift in circulating viruses. . PLoS One 9: e92153. [CrossRef] [PubMed]
    [Google Scholar]
  56. Stevens J., Blixt O., Glaser L., Taubenberger J. K., Palese P., Paulson J. C., Wilson I. A..( 2006;). Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. . J Mol Biol 355: 1143–1155. [CrossRef] [PubMed]
    [Google Scholar]
  57. Thompson C. I., Barclay W. S., Zambon M. C..( 2004;). Changes in in vitro susceptibility of influenza A H3N2 viruses to a neuraminidase inhibitor drug during evolution in the human host. . J Antimicrobial Chemother 53: 759–765. [CrossRef]
    [Google Scholar]
  58. Valenciano M., Kissling E..( 2013;). Early estimates of seasonal influenza vaccine effectiveness in Europe: results from the I-MOVE multicentre case-control study, 2012/13. . Euro Commu Dis Bull 18: 3.
    [Google Scholar]
  59. Wan H., Perez D. R..( 2007;). Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. . J Virol 81: 5181–5191. [CrossRef] [PubMed]
    [Google Scholar]
  60. Wang M., Katz J. M., Webster R. G..( 1989;). Extensive heterogeneity in the hemagglutinin of egg-grown influenza viruses from different patients. . Virol 171: 275–279. [CrossRef]
    [Google Scholar]
  61. Webster R. G., Laver W. G..( 1980;). Determination of the number of nonoverlapping antigenic areas on hong kong (H3N2) influenza virus hemagglutinin with monoclonal antibodies and the selection of variants with potential epidemiological significance. . Virol 104: 139–148. [CrossRef]
    [Google Scholar]
  62. WHO( 2011;). Identification of the haemagglutinin subtype of viral isolates by haemagglutination inhibition testing. . In Manual for the Laboratory Diagnosis and Virological Surveillance of Influenza, pp. 43–58. WHO Press;.
    [Google Scholar]
  63. WHO( 2014;). Recommended composition of influenza virus vaccines for use in the 2015 southern hemisphere influenza season. . Wkly Epidemiol Rec 89: 441–456.
    [Google Scholar]
  64. WHO( 2015;). Recommended composition of influenza virus vaccines for use in the 2015–2016 northern hemisphere influenza season. . Wkly Epidemiol Rec 90: 97–108.
    [Google Scholar]
  65. Widjaja L., Ilyushina N., Webster R. G., Webby R. J..( 2006;). Molecular changes associated with adaptation of human influenza A virus in embryonated chicken eggs. . Virol 350: 137–145. [CrossRef]
    [Google Scholar]
  66. Wiley D. C., Wilson I. A., Skehel J. J..( 1981;). Structural identification of the antibody-binding sites of hong kong influenza haemagglutinin and their involvement in antigenic variation. . Nature 289: 373–378. [CrossRef]
    [Google Scholar]
  67. Yang H., Carney P. J., Chang J. C., Guo Z., Villanueva J. M., Stevens J..( 2015;). Structure and receptor binding preferences of recombinant human A(H3N2) virus hemagglutinins. . Virol 477C: 18–31.[Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000457
Loading
/content/journal/jgv/10.1099/jgv.0.000457
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error