1887

Abstract

Influenza A virus (subtype H3N2) causes seasonal human influenza and is included as a component of influenza vaccines. The majority of vaccine viruses are isolated and propagated in eggs, which commonly results in amino acid substitutions in the haemagglutinin (HA) glycoprotein. These substitutions can affect virus receptor-binding and alter virus antigenicity, thereby, obfuscating the choice of egg-propagated viruses for development into candidate vaccine viruses. To evaluate the effects of egg-adaptive substitutions seen in H3N2 vaccine viruses on sialic acid receptor-binding, we carried out quantitative measurement of virus receptor-binding using surface biolayer interferometry with haemagglutination inhibition (HI) assays to correlate changes in receptor avidity with antigenic properties. Included in these studies was a panel of H3N2 viruses generated by reverse genetics containing substitutions seen in recent egg-propagated vaccine viruses and corresponding cell culture-propagated wild-type viruses. These assays provide a quantitative approach to investigating the importance of individual amino acid substitutions in influenza receptor-binding. Results show that viruses with egg-adaptive HA substitutions R156Q, S219Y, and I226N, have increased binding avidity to α2,3-linked receptor-analogues and decreased binding avidity to α2,6-linked receptor-analogues. No measurable binding was detected for the viruses with amino acid substitution combination 156Q+219Y and receptor-binding increased in viruses where egg-adaptation mutations were introduced into cell culture-propagated virus. Substitutions at positions 156 and 190 appeared to be primarily responsible for low reactivity in HI assays with post-infection ferret antisera raised against 2012–2013 season H3N2 viruses. Egg-adaptive substitutions at position 186 caused substantial differences in binding avidity with an insignificant effect on antigenicity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000457
2016-06-01
2020-07-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/6/1333.html?itemId=/content/journal/jgv/10.1099/jgv.0.000457&mimeType=html&fmt=ahah

References

  1. Aich U., Beckley N., Shriver Z., Raman R., Viswanathan K., Hobbie S., Sasisekharan R.. 2011; Glycomics-based analysis of chicken red blood cells provides insight into the selectivity of the viral agglutination assay. FEBS J278:1699–1712 [CrossRef][PubMed]
    [Google Scholar]
  2. Air G. M.. 2014; Influenza virus-glycan interactions. Curr Opin Virol7:128–133 [CrossRef][PubMed]
    [Google Scholar]
  3. Appiah G. D., Blanton L., D'Mello T., Kniss K., Smith S., Mustaquim D., Steffens C., Dhara R., Cohen J. et al. 2015; Influenza activity - United States, 2014-15 season and composition of the 2015-16 influenza vaccine. Mor Mortal Week Rep64:583–590
    [Google Scholar]
  4. Barman S., Franks J., Turner J. C., Yoon S. W., Webster R. G., Webby R. J.. 2015; Egg-adaptive mutations in H3N2v vaccine virus enhance egg-based production without loss of antigenicity or immunogenicity. Vaccine33:3186–3192 [CrossRef][PubMed]
    [Google Scholar]
  5. Barr I. G., Russell C., Besselaar T. G., Cox N. J., Daniels R. S., Donis R., Engelhardt O. G., Grohmann G., Itamura S. et al. 2014; WHO recommendations for the viruses used in the 2013-2014 Northern Hemisphere influenza vaccine: Epidemiology, antigenic and genetic characteristics of influenza A(H1N1)pdm09, A(H3N2) and B influenza viruses collected from October 2012 to January 2013. Vaccine32:4713–4725 [CrossRef][PubMed]
    [Google Scholar]
  6. Barrett P. N., Portsmouth D., Ehrlich H. J.. 2013; Vero cell culture-derived pandemic influenza vaccines: preclinical and clinical development. Expert Rev Vaccines12:395–413 [CrossRef]
    [Google Scholar]
  7. Benton D. J., Martin S. R., Wharton S. A., McCauley J. W.. 2015; Biophysical measurement of the balance of influenza a hemagglutinin and neuraminidase activities. J Biol Chem290:6516–6521 [CrossRef][PubMed]
    [Google Scholar]
  8. Blackburne B. P., Hay A. J., Goldstein R. A.. 2008; Changing selective pressure during antigenic changes in human influenza H3. PLoS Pathog4:e1000058 [CrossRef][PubMed]
    [Google Scholar]
  9. Broberg E., Snacken R., Adlhoch C., Beauté J., Galinska M., Pereyaslov D., Brown C., Penttinen P..WHO European Region and the European Influenza Surveillance Network 2015; Start of the 2014/15 influenza season in Europe: drifted influenza A(H3N2) viruses circulate as dominant subtype. Euro Surveill20: [CrossRef][PubMed]
    [Google Scholar]
  10. Chambers B. S., Li Y., Hodinka R. L., Hensley S. E.. 2014; Recent H3N2 influenza virus clinical isolates rapidly acquire hemagglutinin or neuraminidase mutations when propagated for antigenic analyses. J Virol88:10986–10989 [CrossRef][PubMed]
    [Google Scholar]
  11. Chen Z., Zhou H., Jin H.. 2010; The impact of key amino acid substitutions in the hemagglutinin of influenza A (H3N2) viruses on vaccine production and antibody response. Vaccine28:4079–4085 [CrossRef][PubMed]
    [Google Scholar]
  12. Cherry J. L., Lipman D. J., Nikolskaya A., Wolf Y. I.. 2009; Evolutionary dynamics of N-glycosylation sites of influenza virus hemagglutinin. PLoS Curr1:RRN1001 [CrossRef][PubMed]
    [Google Scholar]
  13. Daniels R. S., Douglas A. R., Skehel J. J., Wiley D. C.. 1983; Analyses of the antigenicity of influenza haemagglutinin at the pH optimum for virus-mediated membrane fusion. J General Virol64:1657–1662 [CrossRef]
    [Google Scholar]
  14. Daniels R. S., Douglas A. R., Skehel J. J., Wiley D. C., Naeve C. W., Webster R. G., Rogers G. N., Paulson J. C.. 1984; Antigenic analyses of influenza virus haemagglutinins with different receptor-binding specificities. Virol138:174–177 [CrossRef]
    [Google Scholar]
  15. Donis R. O., Davis C. T., Foust A., Hossain M. J., Johnson A., Klimov A., Loughlin R., Xu X., Tsai T. et al. 2014; Performance characteristics of qualified cell lines for isolation and propagation of influenza viruses for vaccine manufacturing. Vaccine32:6583–6590 [CrossRef][PubMed]
    [Google Scholar]
  16. Dormitzer P. R.. 2015; Rapid production of synthetic influenza vaccines. Cur Topics Microbiol Immun386:237–273
    [Google Scholar]
  17. Dormitzer P. R., Suphaphiphat P., Gibson D. G., Wentworth D. E., Stockwell T. B., Algire M. A., Alperovich N., Barro M., Brown D. M. et al. 2013; Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Sci Trans Med 5:185ra168 [CrossRef]
    [Google Scholar]
  18. Doroshenko A., Halperin S. A.. 2009; Trivalent MDCK cell culture-derived influenza vaccine Optaflu (Novartis Vaccines). Expert Rev Vaccines8:679–688 [CrossRef][PubMed]
    [Google Scholar]
  19. Flannery B., Thaker S. N., Clippard J., Monto A. S., Ohmit S. E., Zimmerman R. K., Nowalk M. P., Gaglani M., Jackson M. L. et al. 2013; Interim adjusted estimates of seasonal influenza vaccine effectiveness - United States. In MMWR Morbidity and Mortality Weekly Report pp.119–123
    [Google Scholar]
  20. Gambaryan A. S., Robertson J. S., Matrosovich M. N.. 1999; Effects of egg-adaptation on the receptor-binding properties of human influenza A and B viruses. Virol258:232–239 [CrossRef]
    [Google Scholar]
  21. Glaser L., Stevens J., Zamarin D., Wilson I. A., García-Sastre A., Tumpey T. M., Basler C. F., Taubenberger J. K., Palese P.. 2005; A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J Virol79:11533–11536 [CrossRef][PubMed]
    [Google Scholar]
  22. Gulati S., Smith D. F., Cummings R. D., Couch R. B., Griesemer S. B., St George K., Webster R. G., Air G. M.. 2013; Human H3N2 influenza viruses isolated from 1968 to 2012 show varying preference for receptor substructures with no apparent consequences for disease or spread. PLoS One8:e66325 [CrossRef][PubMed]
    [Google Scholar]
  23. Hensley S. E., Das S. R., Bailey A. L., Schmidt L. M., Hickman H. D., Jayaraman A., Viswanathan K., Raman R., Sasisekharan R. et al. 2009; Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science326:734–736 [CrossRef]
    [Google Scholar]
  24. Hoffmann E., Neumann G., Kawaoka Y., Hobom G., Webster R. G.. (editors) 2000; A DNA transfection system for generation of influenza A virus from eight plasmids. Proc the Nat Academy Sci97:6108–6113 [CrossRef]
    [Google Scholar]
  25. Ito T., Suzuki Y., Mitnaul L., Vines A., Kida H., Kawaoka Y.. 1997; Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. Virol227:493–499 [CrossRef]
    [Google Scholar]
  26. Katz J. M., Webster R. G.. 1992; Amino acid sequence identity between the HA1 of influenza A (H3N2) viruses grown in mammalian and primary chick kidney cells. J Gen Virol73 Pt 5:1159–1165 [CrossRef][PubMed]
    [Google Scholar]
  27. Katz J. M., Wang M., Webster R. G.. 1990; Direct sequencing of the HA gene of influenza (H3N2) virus in original clinical samples reveals sequence identity with mammalian cell-grown virus. J Virol64:1808–1811[PubMed]
    [Google Scholar]
  28. Kobayashi Y., Suzuki Y.. 2012; Evidence for N-glycan shielding of antigenic sites during evolution of human influenza A virus hemagglutinin. J Virol86:3446–3451 [CrossRef][PubMed]
    [Google Scholar]
  29. Kodihalli S., Justewicz D. M., Gubareva L. V., Webster R. G.. 1995; Selection of a single amino acid substitution in the hemagglutinin molecule by chicken eggs can render influenza A virus (H3) candidate vaccine ineffective. J Virol69:4888–4897[PubMed]
    [Google Scholar]
  30. Koel, Burke D. F., Bestebroer T. M., van der Vliet S., Zondag G. C., Vervaet G., Skepner E., Lewis N. S., Spronken M. I. et al. 2013; Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science342:976–979 [CrossRef][PubMed]
    [Google Scholar]
  31. Lin Y. P., Gregory V., Collins P., Kloess J., Wharton S., Cattle N., Lackenby A., Daniels R., Hay A.. 2010; Neuraminidase receptor binding variants of human influenza A(H3N2) viruses resulting from substitution of aspartic acid 151 in the catalytic site: a role in virus attachment?. J Virol84:6769–6781 [CrossRef][PubMed]
    [Google Scholar]
  32. Lin Y. P., Xiong X., Wharton S. A., Martin S. R., Coombs P. J., Vachieri S. G., Christodoulou E., Walker P. A., Liu J. et al. 2012; Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin. Proc Natl Acad Sci U S A109:21474–21479 [CrossRef][PubMed]
    [Google Scholar]
  33. Long J., Bushnell R. V., Tobin J. K., Pan K., Deem M. W., Nara P. L., Tobin G. J.. 2011; Evolution of H3N2 influenza virus in a guinea pig model. PLoS One6:e20130 [CrossRef][PubMed]
    [Google Scholar]
  34. Lu B., Zhou H., Chan W., Kemble G., Jin H.. 2006; Single amino acid substitutions in the hemagglutinin of influenza A/Singapore/21/04 (H3N2) increase virus growth in embryonated chicken eggs. Vaccine24:6691–6693 [CrossRef][PubMed]
    [Google Scholar]
  35. Lu B., Zhou H., Ye D., Kemble G., Jin H.. 2005; Improvement of influenza a/fujian/411/02 (H3N2) virus growth in embryonated chicken eggs by balancing the hemagglutinin and neuraminidase activities, using reverse genetics. J Virol79:6763–6771 [CrossRef][PubMed]
    [Google Scholar]
  36. Matrosovich M., Matrosovich T., Carr J., Roberts N. A., Klenk H. D.. 2003; Overexpression of the alpha-2,6-sialyltransferase in MDCK cells increases influenza virus sensitivity to neuraminidase inhibitors. J Virol77:8418–8425 [CrossRef][PubMed]
    [Google Scholar]
  37. Matrosovich M., Tuzikov A., Bovin N., Gambaryan A., Klimov A., Castrucci M. R., Donatelli I., Kawaoka Y.. 2000; Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol74:8502–8512 [CrossRef][PubMed]
    [Google Scholar]
  38. Medeiros R., Escriou N., Naffakh N., Manuguerra J. -C., van der Werf S.. 2001; Hemagglutinin residues of recent human A(H3N2) influenza viruses that contribute to the inability to agglutinate chicken erythrocytes. Virol289:74–85 [CrossRef]
    [Google Scholar]
  39. Meyer W. J., Wood J. M., Major D., Robertson J. S., Webster R. G., Katz J. M.. 1993; Influence of host cell-mediated variation on the international surveillance of influenza A (H3N2) viruses. J Virol196:130–137 [CrossRef]
    [Google Scholar]
  40. Naeve C. W., Hinshaw V. S., Webster R. G.. 1984; Mutations in the hemagglutinin receptor-binding site can change the biological properties of an influenza virus. J Virol51:567–569[PubMed]
    [Google Scholar]
  41. Ndifon W.. 2011; New methods for analyzing serological data with applications to influenza surveillance. Influenza Other Res Virus5:206–212 [CrossRef]
    [Google Scholar]
  42. Nobusawa E., Ishihara H., Morishita T., Sato K., Nakajima K.. 2000; Change in receptor-binding specificity of recent human influenza A viruses (H3N2): a single amino acid change in hemagglutinin altered its recognition of sialyloligosaccharides. Virol278:587–596 [CrossRef]
    [Google Scholar]
  43. Office for National Statistics 2015; Statistical Bulletin: Excess Winter Mortality in England and Wales, 2014/15 (Provisional) and 2013/14 (Final) 25/11/2015. The National Archives
    [Google Scholar]
  44. Oh D. Y., Barr I. G., Mosse J. A., Laurie K. L.. 2008; MDCK-SIAT1 cells show improved isolation rates for recent human influenza viruses compared to conventional MDCK cells. J Clin Microbiol46:2189–2194 [CrossRef][PubMed]
    [Google Scholar]
  45. Pan K., Long J., Sun H., Tobin G. J., Nara P. L., Deem M. W.. 2011; Selective pressure to increase charge in immunodominant epitopes of the H3 hemagglutinin influenza protein. J Mol Evol72:90–103 [CrossRef][PubMed]
    [Google Scholar]
  46. Perdue M. L., Arnold F., Li S., Donabedian A., Cioce V., Warf T., Huebner R.. 2011; The future of cell culture-based influenza vaccine production. Exp Rev Vaccines10:1183–1194 [CrossRef]
    [Google Scholar]
  47. Robertson J. S., Bootman J. S., Newman R., Oxford J. S., Daniels R. S., Webster R. G., Schild G. C.. 1987; Structural changes in the haemagglutinin which accompany egg adaptation of an influenza A(H1N1) virus. Virol160:31–37 [CrossRef]
    [Google Scholar]
  48. Robertson J. S., Naeve C. W., Webster R. G., Bootman J. S., Newman R., Schild G. C.. 1985; Alterations in the hemagglutinin associated with adaptation of influenza B virus to growth in eggs. Virology143:166–174 [CrossRef]
    [Google Scholar]
  49. Rocha E. P., Xu X., Hall H. E., Allen J. R., Regnery H. L., Cox N. J.. 1993; Comparison of 10 influenza A (H1N1 and H3N2) haemagglutinin sequences obtained directly from clinical specimens to those of MDCK cell- and egg-grown viruses. J Gen Virol74:2513–2518 [CrossRef][PubMed]
    [Google Scholar]
  50. Rogers G. N., Paulson J. C., Daniels R. S., Skehel J. J., Wilson I. A., Wiley D. C.. 1983; Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature304:76–78 [CrossRef]
    [Google Scholar]
  51. Schild G. C., Oxford J. S., de Jong J. C., Webster R. G.. 1983; Evidence for host-cell selection of influenza virus antigenic variants. Nature303:706–709 [CrossRef]
    [Google Scholar]
  52. Skehel J. J., Wiley D. C.. 2000; Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem69:531–569 [CrossRef][PubMed]
    [Google Scholar]
  53. Skehel J. J., Stevens D. J., Daniels R. S., Douglas A. R., Knossow M., Wilson I. A., Wiley D. C.. 1984; A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. Proc Natl Acad Sci U S A81:1779–1783
    [Google Scholar]
  54. Skowronski D. M., Janjua N. Z., De Serres G., Dickinson J. A., Winter A. L., Mahmud S. M., Sabaiduc S., Gubbay J. B., Charest H. et al. 2013; Interim estimates of influenza vaccine effectiveness in 2012/13 from Canada's sentinel surveillance network, January 2013. Euro Sur18:
    [Google Scholar]
  55. Skowronski D. M., Janjua N. Z., De Serres G., Sabaiduc S., Eshaghi A., Dickinson J. A., Fonseca K., Winter A. L., Gubbay J. B. et al. 2014; Low 2012-13 influenza vaccine effectiveness associated with mutation in the egg-adapted H3N2 vaccine strain not antigenic drift in circulating viruses. PLoS One9:e92153 [CrossRef][PubMed]
    [Google Scholar]
  56. Stevens J., Blixt O., Glaser L., Taubenberger J. K., Palese P., Paulson J. C., Wilson I. A.. 2006; Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol355:1143–1155 [CrossRef][PubMed]
    [Google Scholar]
  57. Thompson C. I., Barclay W. S., Zambon M. C.. 2004; Changes in in vitro susceptibility of influenza A H3N2 viruses to a neuraminidase inhibitor drug during evolution in the human host. J Antimicrobial Chemother53:759–765 [CrossRef]
    [Google Scholar]
  58. Valenciano M., Kissling E.. 2013; Early estimates of seasonal influenza vaccine effectiveness in Europe: results from the I-MOVE multicentre case-control study, 2012/13. Euro Commu Dis Bull18:3
    [Google Scholar]
  59. Wan H., Perez D. R.. 2007; Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. J Virol81:5181–5191 [CrossRef][PubMed]
    [Google Scholar]
  60. Wang M., Katz J. M., Webster R. G.. 1989; Extensive heterogeneity in the hemagglutinin of egg-grown influenza viruses from different patients. Virol171:275–279 [CrossRef]
    [Google Scholar]
  61. Webster R. G., Laver W. G.. 1980; Determination of the number of nonoverlapping antigenic areas on hong kong (H3N2) influenza virus hemagglutinin with monoclonal antibodies and the selection of variants with potential epidemiological significance. Virol104:139–148 [CrossRef]
    [Google Scholar]
  62. WHO 2011; Identification of the haemagglutinin subtype of viral isolates by haemagglutination inhibition testing. In Manual for the Laboratory Diagnosis and Virological Surveillance of Influenza pp.43–58 WHO Press;
    [Google Scholar]
  63. WHO 2014; Recommended composition of influenza virus vaccines for use in the 2015 southern hemisphere influenza season. Wkly Epidemiol Rec89:441–456
    [Google Scholar]
  64. WHO 2015; Recommended composition of influenza virus vaccines for use in the 2015–2016 northern hemisphere influenza season. Wkly Epidemiol Rec90:97–108
    [Google Scholar]
  65. Widjaja L., Ilyushina N., Webster R. G., Webby R. J.. 2006; Molecular changes associated with adaptation of human influenza A virus in embryonated chicken eggs. Virol350:137–145 [CrossRef]
    [Google Scholar]
  66. Wiley D. C., Wilson I. A., Skehel J. J.. 1981; Structural identification of the antibody-binding sites of hong kong influenza haemagglutinin and their involvement in antigenic variation. Nature289:373–378 [CrossRef]
    [Google Scholar]
  67. Yang H., Carney P. J., Chang J. C., Guo Z., Villanueva J. M., Stevens J.. 2015; Structure and receptor binding preferences of recombinant human A(H3N2) virus hemagglutinins. Virol477C:18–31
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000457
Loading
/content/journal/jgv/10.1099/jgv.0.000457
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error