1887

Abstract

Kidney epithelial cells are common targets for human and rhesus cytomegalovirus (HCMV and RhCMV) , and represent an important reservoir for long-term CMV shedding in urine. To better understand the role of kidney epithelial cells in primate CMV natural history, primary cultures of rhesus macaque kidney epithelial cells (MKE) were established and tested for infectivity by five RhCMV strains, including two wild-type strains (UCD52 and UCD59) and three strains containing different coding contents in UL/b′. The latter strains included 180.92 [containing an intact RhUL128-RhUL130-R hUL131 (RhUL128L) locus but deleted for the UL/b′ RhUL148–rh167-loci], 68-1 (RhUL128L-defective and fibroblast-tropic) and BRh68-1.2 (the RhUL128L-repaired version of 68-1). As demonstrated by RhCMV cytopathic effect, plaque formation, growth kinetics and early virus entry, we showed that MKE were differentially susceptible to RhCMV infection, related to UL/b′ coding contents of the different strains. UCD52 and UCD59 replicated vigorously in MKE, 68-1 replicated poorly, and 180.92 grew with intermediate kinetics. Reconstitution of RhUL128L in 68-1 (BRh68-1.2) restored its replication efficiency in MKE as compared to UCD52 and UCD59, consistent with the essential role of UL128L for HCMV epithelial tropism. Further analysis revealed that the UL/b′ UL148-rh167-loci deletion in 180.92 impaired RhUL132 (rh160) expression. Given that 180.92 retains an intact RhUL128L, but genetically or functionally lacks genes from RhUL132 (rh160) to rh167 in UL/b′, its attenuated infection efficiency indicated that, along with RhUL128L, an additional protein(s) encoded within the UL/b′ RhUL132 (rh160)-rh167 region (potentially, RhUL132 and/or RhUL148) is indispensable for efficient replication in MKE.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000455
2016-06-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/6/1426.html?itemId=/content/journal/jgv/10.1099/jgv.0.000455&mimeType=html&fmt=ahah

References

  1. Adler B., Scrivano L., Ruzcics Z., Rupp B., Sinzger C., Koszinowski U.. 2006; Role of human cytomegalovirus UL131A in cell type-specific virus entry and release. J Gen Virol87:2451–2460 [CrossRef][PubMed]
    [Google Scholar]
  2. Akter P., Cunningham C., McSharry B. P., Dolan A., Addison C., Dargan D. J., Hassan-Walker A. F., Emery V. C., Griffiths P. D., Wilkinson G. W., Davison A. J.. 2003; Two novel spliced genes in human cytomegalovirus. J Gen Virol84:1117–1122 [CrossRef][PubMed]
    [Google Scholar]
  3. Ando Y., Iwasaki T., Sata T., Soushi S., Kurata T., Arao Y.. 1997; Enhanced cytopathic effect of human cytomegalovirus on a retinal pigment epithelium cell line, K-1034, by serum-free medium. Arch Virol142:1645–1658[PubMed]
    [Google Scholar]
  4. Assaf B. T., Mansfield K. G., Strelow L., Westmoreland S. V., Barry P. A., Kaur A.. 2014; Limited dissemination and shedding of the UL128 complex-intact, ul/b'-defective rhesus cytomegalovirus strain 180.92. J Virol88:9310–9320 [CrossRef][PubMed]
    [Google Scholar]
  5. Baer P. C., Bereiter-Hahn J., Schubert R., Geiger H.. 2006; Differentiation status of human renal proximal and distal tubular epithelial cells in vitro: Differential expression of characteristic markers. Cells Tissues Organs184:16–22 [CrossRef][PubMed]
    [Google Scholar]
  6. Bodaghi B., Slobbe-van Drunen M. E., Topilko A., Perret E., Vossen R. C., van Dam-Mieras M. C., Zipeto D., Virelizier J. L., LeHoang P., Bruggeman C. A., Michelson S.. 1999; Entry of human cytomegalovirus into retinal pigment epithelial and endothelial cells by endocytosis. Invest Ophthalmol Vis Sci40:2598–2607
    [Google Scholar]
  7. Bradley A. J., Lurain N. S., Ghazal P., Trivedi U., Cunningham C., Baluchova K., Gatherer D., Wilkinson G. W., Dargan D. J., Davison A. J.. 2009; High-throughput sequence analysis of variants of human cytomegalovirus strains towne and AD169. J Gen Virol90:2375–2380 [CrossRef][PubMed]
    [Google Scholar]
  8. Britt W. J., Alford C. A.. 1996; Cytomegalovirus. In Fields Virology, 3rd edn. pp.2493–2523 Edited by Fields B. N., Kniepe D. N., Howley P. M.. Philadelphia, PA: Lippincott-Raven;
    [Google Scholar]
  9. Cha T. A., Tom E., Kemble G. W., Duke G. M., Mocarski E. S., Spaete R. R.. 1996; Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J Virol70:78–83[PubMed]
    [Google Scholar]
  10. Chang W. L., Kirchoff V., Pari G. S., Barry P. A.. 2002; Replication of rhesus cytomegalovirus in life-expanded rhesus fibroblasts expressing human telomerase. J Virol Methods104:135–146[PubMed]
    [Google Scholar]
  11. Chang W. L., Barry P. A.. 2003; Cloning of the full-length rhesus cytomegalovirus genome as an infectious and self-excisable bacterial artificial chromosome for analysis of viral pathogenesis. J Virol77:5073–5083[PubMed]
    [Google Scholar]
  12. Cheung T. C., Humphreys I. R., Potter K. G., Norris P. S., Shumway H. M., Tran B. R., Patterson G., Jean-Jacques R., Yoon M., Spear P. G., Murphy K. M., Lurain N. S., Benedict C. A., Ware C. F.. 2005; Evolutionarily divergent herpesviruses modulate T cell activation by targeting the herpesvirus entry mediator cosignaling pathway. Proc Natl Acad Sci U S A102:13218–13223 [CrossRef]
    [Google Scholar]
  13. Cunningham C., Gatherer D., Hilfrich B., Baluchova K., Dargan D. J., Thomson M., Griffiths P. D., Wilkinson G. W., Schulz T. F., Davison A. J.. 2010; Sequences of complete human cytomegalovirus genomes from infected cell cultures and clinical specimens. J Gen Virol91:605–615 [CrossRef][PubMed]
    [Google Scholar]
  14. DaPalma T., Doonan B. P., Trager N. M., Kasman L. M.. 2010; A systematic approach to virus–virus interactions. Virus Res149:1–9 [CrossRef][PubMed]
    [Google Scholar]
  15. Dargan D. J., Douglas E., Cunningham C., Jamieson F., Stanton R. J., Baluchova K., McSharry B. P., Tomasec P., Emery V. C., Percivalle E., Sarasini A., Gerna G., Wilkinson G. W., Davison A. J.. 2010; Sequential mutations associated with adaptation of human cytomegalovirus to growth in cell culture. J Gen Virol91:1535–1546 [CrossRef][PubMed]
    [Google Scholar]
  16. Elkouby-Naor L., Ben-Yosef T.. 2010; Functions of claudin tight junction proteins and their complex interactions in various physiological systems. Int Rev Cell Mol Biol279:1–32 [CrossRef][PubMed]
    [Google Scholar]
  17. Esclatine A., Lemullois M., Servin A. L., Quero A. M., Geniteau-Legendre M.. 2000; Human cytomegalovirus infects caco-2 intestinal epithelial cells basolaterally regardless of the differentiation state. J Virol74:513–517[PubMed]
    [Google Scholar]
  18. Fish K. N., Soderberg-Naucler C., Mills L. K., Stenglein S., Nelson J. A.. 1998; Human cytomegalovirus persistently infects aortic endothelial cells. J Virol72:5661–5668[PubMed]
    [Google Scholar]
  19. Gonzalez-Mariscal L., Garay E., Lechuga S.. 2009; Virus interaction with the apical junctional complex. Front Biosci14:731–768
    [Google Scholar]
  20. Goodrum F., Reeves M., Sinclair J., High K., Shenk T.. 2007; Human cytomegalovirus sequences expressed in latently infected individuals promote a latent infection in vitro. Blood110:937–945 [CrossRef][PubMed]
    [Google Scholar]
  21. Hahn G., Revello M. G., Patrone M., Percivalle E., Campanini G., Sarasini A., Wagner M., Gallina A., Milanesi G., Koszinowski U., Baldanti F., Gerna G.. 2004; Human cytomegalovirus UL131-128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J Virol78:10023–10033 [CrossRef][PubMed]
    [Google Scholar]
  22. Hansen S. G., Strelow L. I., Franchi D. C., Anders D. G., Wong S. W.. 2003; Complete sequence and genomic analysis of rhesus cytomegalovirus. J Virol77:6620–6636[PubMed]
    [Google Scholar]
  23. He R., Ma Y., Qi Y., Jiang S., Wang N., Li M., Ji Y., Sun Z., Ruan Q.. 2012; Characterization of human cytomegalovirus UL146 transcripts. Virus Res163:223–228 [CrossRef][PubMed]
    [Google Scholar]
  24. Ho M.. 1991; Cytomegalovirus: Biology and Infection New York: Plenum Medical Book Co;
    [Google Scholar]
  25. Jarvis M. A., Wang C. E., Meyers H. L., Smith P. P., Corless C. L., Henderson G. J., Vieira J., Britt W. J., Nelson J. A.. 1999; Human cytomegalovirus infection of caco-2 cells occurs at the basolateral membrane and is differentiation state dependent. J Virol73:4552–4560[PubMed]
    [Google Scholar]
  26. Jarvis M. A., Nelson J. A.. 2007; Human cytomegalovirus tropism for endothelial cells: Not all endothelial cells are created equal. J Virol81:2095–2101 [CrossRef][PubMed]
    [Google Scholar]
  27. Kao W. W., Prockop D. J.. 1977; Proline analogue removes fibroblasts from cultured mixed cell populations. Nat New Biol266:63–64[PubMed]
    [Google Scholar]
  28. Kirchoff V., Wong S., St J. S., Pari G. S.. 2002; Generation of a life-expanded rhesus monkey fibroblast cell line for the growth of rhesus rhadinovirus (RRV). Arch Virol147:321–333[PubMed]
    [Google Scholar]
  29. Kudchodkar S. B., Yu Y., Maguire T. G., Alwine J. C.. 2004; Human cytomegalovirus infection induces Imycin-insensitive phosphorylation of downstream effectors of mTOR kinase. J Virol78:11030–11039 [CrossRef][PubMed]
    [Google Scholar]
  30. Landolfo S., Gariglio M., Gribaudo G., Lembo D.. 2003; The human cytomegalovirus. Pharmacol Ther98:269–297 [CrossRef][PubMed]
    [Google Scholar]
  31. Li G., Nguyen C. C., Ryckman B. J., Britt W. J., Kamil J. P.. 2015; A viral regulator of glycoprotein complexes contributes to human cytomegalovirus cell tropism. Proc Natl Acad Sci U S A112:4471–4476 [CrossRef][PubMed]
    [Google Scholar]
  32. Lilja A. E., Chang W. L., Barry P. A., Becerra S. P., Shenk T. E.. 2008; Functional genetic analysis of rhesus cytomegalovirus: Rh01 is an epithelial cell tropism factor. J Virol82:2170–2181 [CrossRef][PubMed]
    [Google Scholar]
  33. Lilja A. E., Shenk T.. 2008; Efficient replication of rhesus cytomegalovirus variants in multiple rhesus and human cell types. Proc Natl Acad Sci U S A105:19950–19955
    [Google Scholar]
  34. Lockridge K. M., Sequar G., Zhou S. S., Yue Y., Mandell C. P., Barry P. A.. 1999; Pathogenesis of experimental rhesus cytomegalovirus infection. J Virol73:9576–9583[PubMed]
    [Google Scholar]
  35. Lurain N. S., Fox A. M., Lichy H. M., Bhorade S. M., Ware C. F., Huang D. D., Kwan S. P., Garrity E. R., Chou S.. 2006; Analysis of the human cytomegalovirus genomic region from UL146 through UL147A reveals sequence hypervariability, genotypic stability, and overlapping transcripts. Virol J3, :4 [CrossRef][PubMed]
    [Google Scholar]
  36. McCormick A. L., Roback L., Livingston-Rosanoff D., St Clair C.. 2010; The human cytomegalovirus UL36 gene controls caspase-dependent and -independent cell death programs activated by infection of monocytes differentiating to macrophages. J Virol84:5108–5123 [CrossRef][PubMed]
    [Google Scholar]
  37. Millard A. L., Häberli L., Sinzger C., Ghielmetti M., Schneider M. K., Bossart W., Seebach J. D., Mueller N. J., Haberli L.. 2010; Efficiency of porcine endothelial cell infection with human cytomegalovirus depends on both virus tropism and endothelial cell vascular origin. Xenotransplantation17:274–287 [CrossRef][PubMed]
    [Google Scholar]
  38. Oxford K. L., Eberhardt M. K., Yang K. W., Strelow L., Kelly S., Zhou S. S., Barry P. A.. 2008; Protein coding content of the ULb′ region of wild-type rhesus cytomegalovirus. Virology (Auckl)373:181–188 [CrossRef][PubMed]
    [Google Scholar]
  39. Oxford K. L., Strelow L., Yue Y., Chang W. L., Schmidt K. A., Diamond D. J., Barry P. A.. 2011; Open reading frames carried on ULb′ are implicated in shedding and horizontal transmission of rhesus cytomegalovirus in rhesus monkeys. J Virol85:5105–5114 [CrossRef][PubMed]
    [Google Scholar]
  40. Penfold M. E. T., Dairaghi D. J., Duke G. M., Saederup N., Mocarski E. S., Kemble G. W., Schall T. J.. 1999; Cytomegalovirus encodes a potent a chemokine. Proc Natl Acad Sci U S A96:9839–9844
    [Google Scholar]
  41. Pepin K. M., Hanley K. A.. 2008; Density-dependent competitive suppression of sylvatic dengue virus by endemic dengue virus in cultured mosquito cells. Vector Borne Zoonotic Dis8:821–828 [CrossRef][PubMed]
    [Google Scholar]
  42. Pepin K. M., Lambeth K., Hanley K. A.. 2008; Asymmetric competitive suppression between strains of dengue virus. BMC Microbiol8: [CrossRef][PubMed]
    [Google Scholar]
  43. Perefarres F., Thebaud G., Lefeuvre P., Chiroleu F., Rimbaud L., Hoareau M., Reynaud B., Lett J. M.. 2014; Frequency-dependent assistance as a way out of competitive exclusion between two strains of an emerging virus. Proc Biol Sci281:2013–3374 [CrossRef]
    [Google Scholar]
  44. Prichard M. N., Penfold M. E., Duke G. M., Spaete R. R., Kemble G. W.. 2001; A review of genetic differences between limited and extensively passaged human cytomegalovirus strains. Rev Med Virol11:191–200[PubMed]
    [Google Scholar]
  45. Prod'homme V., Sugrue D. M., Stanton R. J., Nomoto A., Davies J., Rickards C. R., Cochrane D., Moore M., Wilkinson G. W., Tomasec P.. 2010; Human cytomegalovirus UL141 promotes efficient downregulation of the natural killer cell activating ligand CD112. J Gen Virol91:2034–2039 [CrossRef][PubMed]
    [Google Scholar]
  46. Read A. F., Taylor L. H.. 2001; The ecology of genetically diverse infections. Science292:1099–1102[PubMed]
    [Google Scholar]
  47. Renzette N., Bhattacharjee B., Jensen J. D., Gibson L., Kowalik T. F.. 2011; Extensive genome-wide variability of human cytomegalovirus in congenitally infected infants. PLoS Pathog7:e1001344 [CrossRef][PubMed]
    [Google Scholar]
  48. Rivailler P., Kaur A., Johnson R. P., Wang F.. 2006; Genomic sequence of rhesus cytomegalovirus 180.92: insights into the coding potential of rhesus cytomegalovirus. J Virol80:4179–4182 [CrossRef][PubMed]
    [Google Scholar]
  49. Ryckman B. J., Jarvis M. A., Drummond D. D., Nelson J. A., Johnson D. C.. 2006; Human cytomegalovirus entry into epithelial and endothelial cells depends on genes UL128 to UL150 and occurs by endocytosis and low-pH fusion. J Virol80:710–722 [CrossRef][PubMed]
    [Google Scholar]
  50. Ryckman B. J., Rainish B. L., Chase M. C., Borton J. A., Nelson J. A., Jarvis M. A., Johnson D. C.. 2008; Characterization of the human cytomegalovirus gH/gL/UL128-131 complex that mediates entry into epithelial and endothelial cells. J Virol82:60–70 [CrossRef][PubMed]
    [Google Scholar]
  51. Saitou M., Ando-Akatsuka Y., Itoh M., Furuse M., Inazawa J., Fujimoto K., Tsukita S.. 1997; Mammalian occludin in epithelial cells: its expression and subcellular distribution. Eur J Cell Biol73:222–231[PubMed]
    [Google Scholar]
  52. Scrivano L., Sinzger C., Nitschko H., Koszinowski U. H., Adler B.. 2011; HCMV spread and cell tropism are determined by distinct virus populations. PLoS Pathog7:e1001256 [CrossRef][PubMed]
    [Google Scholar]
  53. Sinzger C., Kahl M., Laib K., Klingel K., Rieger P., Plachter B., Jahn G.. 2000; Tropism of human cytomegalovirus for endothelial cells is determined by a post-entry step dependent on efficient translocation to the nucleus. J Gen Virol81:3021–3035 [CrossRef][PubMed]
    [Google Scholar]
  54. Sinzger C., Digel M., Jahn G.. 2008; Cytomegalovirus cell tropism. Curr Top Microbiol Immunol325:63–83[PubMed]
    [Google Scholar]
  55. Spaderna S., Kropff B., Ködel Y., Shen S., Coley S., Lu S., Britt W., Mach M., Kodel Y.. 2005; Deletion of gpUL132, a structural component of human cytomegalovirus, results in impaired virus replication in fibroblasts. J Virol79:11837–11847 [CrossRef][PubMed]
    [Google Scholar]
  56. Stanton R. J., Baluchova K., Dargan D. J., Cunningham C., Sheehy O., Seirafian S., McSharry B. P., Neale M. L., Davies J. A., Tomasec P., Davison A. J., Wilkinson G. W.. 2010; Reconstruction of the complete human cytomegalovirus genome in a BAC reveals RL13 to be a potent inhibitor of replication. J Clin Invest120: [CrossRef][PubMed]
    [Google Scholar]
  57. Tomasec P., Wang E. C., Davison A. J., Vojtesek B., Armstrong M., Griffin C., McSharry B. P., Morris R. J., Llewellyn-Lacey S., Rickards C., Nomoto A., Sinzger C., Wilkinson G. W.. 2005; Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat Immunol6:181–188 [CrossRef][PubMed]
    [Google Scholar]
  58. Tugizov S., Maidji E., Pereira L.. 1996; Role of apical and basolateral membranes in replication of human cytomegalovirus in polarized retinal pigment epithelial cells. J Gen Virol 77: (Pt 1)61–74 [CrossRef][PubMed]
    [Google Scholar]
  59. Umashankar M., Petrucelli A., Cicchini L., Caposio P., Kreklywich C. N., Rak M., Bughio F., Goldman D. C., Hamlin K. L., Nelson J. A., Fleming W. H., Streblow D. N., Goodrum F.. 2011; A novel human cytomegalovirus locus modulates cell type-specific outcomes of infection. PLoS Pathog7:e1002444 [CrossRef][PubMed]
    [Google Scholar]
  60. Vogel P., Weigler B. J., Kerr H., Hendrickx A. G., Barry P. A.. 1994; Seroepidemiologic studies of cytomegalovirus infection in a breeding population of rhesus macaques. Lab Anim Sci44:25–30[PubMed]
    [Google Scholar]
  61. Wang D., Shenk T.. 2005; Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc Natl Acad Sci U S A102:18153–18158 [CrossRef][PubMed]
    [Google Scholar]
  62. Wang D., Yu Q. C., Schröer J., Murphy E., Shenk T.. 2007; Human cytomegalovirus uses two distinct pathways to enter retinal pigmented epithelial cells. Proc Natl Acad Sci U S A104:20037–20042 [CrossRef][PubMed]
    [Google Scholar]
  63. Wussow F., Yue Y., Martinez J., Deere J. D., Longmate J., Herrmann A., Barry P. A., Diamond D. J.. 2013; A vaccine based on the rhesus cytomegalovirus UL128 complex induces broadly neutralizing antibodies in rhesus macaques. J Virol87:1322–1332 [CrossRef][PubMed]
    [Google Scholar]
  64. Yue Y., Kaur A., Zhou S. S., Barry P. A.. 2006; Characterization and immunological analysis of the rhesus cytomegalovirus homologue (Rh112) of the human cytomegalovirus UL83 lower matrix phosphoprotein (pp65). J Gen Virol87:777–787 [CrossRef][PubMed]
    [Google Scholar]
  65. Yue Y., Kaur A., Eberhardt M. K., Kassis N., Zhou S. S., Tarantal A. F., Barry P. A.. 2007; Immunogenicity and protective efficacy of DNA vaccines expressing rhesus cytomegalovirus glycoprotein B, phosphoprotein 65-2, and viral interleukin-10 in rhesus macaques. J Virol81:1095–1109 [CrossRef][PubMed]
    [Google Scholar]
  66. Yue Y., Barry P. A.. 2008; Rhesus cytomegalovirus a nonhuman primate model for the study of human cytomegalovirus. Adv Virus Res72:207–226 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000455
Loading
/content/journal/jgv/10.1099/jgv.0.000455
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error