1887

Abstract

Microglial activation is a hallmark of the neuroimmunological response to Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and prion disease. The CX3C chemokine axis consists of fractalkine (CX3CL1) and its receptor (CX3CR1); these are expressed by neurons and microglia respectively, and are known to modulate microglial activation. In prion-infected mice, both and are altered, suggesting a role in disease. To investigate the influence of CX3C axis signalling on prion disease, we infected knockout (-KO) and control mice with scrapie strains 22L and RML. Deletion of had no effect on development of clinical signs or disease incubation period. In addition, comparison of brain tissue from -KO and control mice revealed no significant differences in cytokine levels, spongiosis, deposition of disease-associated prion protein or microglial activation. Thus, microglial activation during prion infection did not require CX3C axis signalling.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000442
2016-06-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/6/1481.html?itemId=/content/journal/jgv/10.1099/jgv.0.000442&mimeType=html&fmt=ahah

References

  1. Aguzzi A., Nuvolone M., Zhu C.. 2013; The immunobiology of prion diseases. Nat Rev Immunol13:888–902 [CrossRef][PubMed]
    [Google Scholar]
  2. Biber K., Neumann H., Inoue K., Boddeke H. W.. 2007; Neuronal ‘On' and ‘Off' signals control microglia. Trends Neurosci30:596–602 [CrossRef][PubMed]
    [Google Scholar]
  3. Biber K., Owens T., Boddeke E.. 2014; What is microglia neurotoxicity (Not)?. Glia62:841–854 [CrossRef][PubMed]
    [Google Scholar]
  4. Cardona A. E., Pioro E. P., Sasse M. E., Kostenko V., Cardona S. M., Dijkstra I. M., Huang D., Kidd G., Dombrowski S., Ransohoff R. M.. 2006; Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci9:917–924 [CrossRef][PubMed]
    [Google Scholar]
  5. Cho S. H., Sun B., Zhou Y., Kauppinen T. M., Halabisky B., Wes P., Ransohoff R. M., Gan L.. 2011; CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J Biol Chem286:32713–32722 [CrossRef][PubMed]
    [Google Scholar]
  6. Combadière C., Potteaux S., Gao J. L., Esposito B., Casanova S., Lee E. J., Debré P., Tedgui A., Murphy P. M., Mallat Z.. 2003; Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation107:1009–1016 [CrossRef][PubMed]
    [Google Scholar]
  7. Cunningham C., Deacon R., Wells H., Boche D., Waters S., Diniz C. P., Scott H., Rawlins J. N., Perry V. H.. 2003; Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease. Eur J Neurosci17:2147–2155 [CrossRef][PubMed]
    [Google Scholar]
  8. Grizenkova J., Akhtar S., Brandner S., Collinge J., Lloyd S. E.. 2014; Microglial Cx3cr1 knockout reduces prion disease incubation time in mice. BMC Neurosci15:44 [CrossRef][PubMed]
    [Google Scholar]
  9. Hughes P. M., Botham M. S., Frentzel S., Mir A., Perry V. H.. 2002; Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS. Glia37:314–327 [CrossRef][PubMed]
    [Google Scholar]
  10. Jung S., Aliberti J., Graemmel P., Sunshine M. J., Kreutzberg G. W., Sher A., Littman D. R.. 2000; Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol20:4106–4114 [CrossRef][PubMed]
    [Google Scholar]
  11. Kostadinova F. I., Baba T., Ishida Y., Kondo T., Popivanova B. K., Mukaida N.. 2010; Crucial involvement of the CX3CR1-CX3CL1 axis in dextran sulfate sodium-mediated acute colitis in mice. J Leukoc Biol88:133–143 [CrossRef][PubMed]
    [Google Scholar]
  12. Lee S., Varvel N. H., Konerth M. E., Xu G., Cardona A. E., Ransohoff R. M., Lamb B. T.. 2010; CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am J Pathol177:2549–2562 [CrossRef][PubMed]
    [Google Scholar]
  13. Limatola C., Ransohoff R. M.. 2014; Modulating neurotoxicity through CX3CL1/CX3CR1 signaling. Front Cell Neurosci8:229 [CrossRef][PubMed]
    [Google Scholar]
  14. Medina-Contreras O., Geem D., Laur O., Williams I. R., Lira S. A., Nusrat A., Parkos C. A., Denning T. L.. 2011; CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J Clin Invest121:4787–4795 [CrossRef][PubMed]
    [Google Scholar]
  15. Paolicelli R. C., Bisht K., Tremblay M. È.. 2014; Fractalkine regulation of microglial physiology and consequences on the brain and behavior. Front Cell Neurosci8:129 [CrossRef][PubMed]
    [Google Scholar]
  16. Park K. W., Lee H. G., Jin B. K., Lee Y. B.. 2007; Interleukin-10 endogenously expressed in microglia prevents lipopolysaccharide-induced neurodegeneration in the rat cerebral cortex in vivo. Exp Mol Med39:812–819 [CrossRef][PubMed]
    [Google Scholar]
  17. Prinz M., Priller J., Sisodia S. S., Ransohoff R. M.. 2011; Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci14:1227–1235 [CrossRef][PubMed]
    [Google Scholar]
  18. Rangel A., Race B., Phillips K., Striebel J., Kurtz N., Chesebro B.. 2014; Distinct patterns of spread of prion infection in brains of mice expressing anchorless or anchored forms of prion protein. Acta Neuropathol Commun2:8 [CrossRef][PubMed]
    [Google Scholar]
  19. Ransohoff R. M., Schafer D., Vincent A., Blachère N. E., Bar-Or A.. 2015; Neuroinflammation: ways in which the immune system affects the brain. Neurotherapeutics12:896–909 [CrossRef][PubMed]
    [Google Scholar]
  20. Saijo K., Glass C. K.. 2011; Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol11:775–787 [CrossRef][PubMed]
    [Google Scholar]
  21. Smith J. A., Das A., Ray S. K., Banik N. L.. 2012; Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull87:10–20 [CrossRef][PubMed]
    [Google Scholar]
  22. Song C. H., Honmou O., Furuoka H., Horiuchi M.. 2011; Identification of chemoattractive factors involved in the migration of bone marrow-derived mesenchymal stem cells to brain lesions caused by prions. J Virol85:11069–11078 [CrossRef][PubMed]
    [Google Scholar]
  23. Striebel J. F., Race B., Meade-White K. D., LaCasse R., Chesebro B.. 2011; Strain specific resistance to murine scrapie associated with a naturally occurring human prion protein polymorphism at residue 171. PLoS Pathog7:e1002275 [CrossRef][PubMed]
    [Google Scholar]
  24. Tamgüney G., Giles K., Glidden D. V., Lessard P., Wille H., Tremblay P., Groth D. F., Yehiely F., Korth C., Prusiner S. B.. 2008; Genes contributing to prion pathogenesis. J Gen Virol89:1777–1788 [CrossRef][PubMed]
    [Google Scholar]
  25. Tribouillard-Tanvier D., Race B., Striebel J. F., Carroll J. A., Phillips K., Chesebro B.. 2012; Early cytokine elevation, PrPres deposition, and gliosis in mouse scrapie: no effect on disease by deletion of cytokine genes IL-12p40 and IL-12p35. J Virol86:10377–10383 [CrossRef][PubMed]
    [Google Scholar]
  26. Ullman-Culleré M. H., Foltz C. J.. 1999; Body condition scoring: a rapid and accurate method for assessing health status in mice. Lab Anim Sci49:319–323[PubMed]
    [Google Scholar]
  27. Wolf Y., Yona S., Kim K. W., Jung S.. 2013; Microglia, seen from the CX3CR1 angle. Front Cell Neurosci7:26 [CrossRef][PubMed]
    [Google Scholar]
  28. Xie W. L., Shi Q., Zhang J., Zhang B. Y., Gong H. S., Guo Y., Wang S. B., Xu Y., Wang K., Dong X. P.. 2013; Abnormal activation of microglia accompanied with disrupted CX3CR1/CX3CL1 pathway in the brains of the hamsters infected with scrapie agent 263K. J Mol Neurosci51:919–932 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000442
Loading
/content/journal/jgv/10.1099/jgv.0.000442
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error