1887

Abstract

Nipah virus (NiV) is an emerging paramyxovirus that can cause lethal respiratory illness in humans. No vaccine/therapeutic is currently licensed for humans. Human-to-human transmission was previously reported during outbreaks and NiV could be isolated from respiratory secretions, but the proportion of cases in Malaysia exhibiting respiratory symptoms was significantly lower than that in Bangladesh. Previously, we showed that primary human basal respiratory epithelial cells are susceptible to both NiV-Malaysia (M) and -Bangladesh (B) strains causing robust pro-inflammatory responses. However, the cells of the human respiratory epithelium that NiV targets are unknown and their role in NiV transmission and NiV-related lung pathogenesis is still poorly understood. Here, we characterized NiV infection of the human respiratory epithelium using a model of the human tracheal/bronchial (B-ALI) and small airway (S-ALI) epithelium cultured at an air–liquid interface. We show that NiV-M and NiV-B infect ciliated and secretory cells in B/S-ALI, and that infection of S-ALI, but not B-ALI, results in disruption of the epithelium integrity and host responses recruiting human immune cells. Interestingly, NiV-B replicated more efficiently in B-ALI than did NiV-M. These results suggest that the human tracheal/bronchial epithelium is favourable to NiV replication and shedding, while inducing a limited host response. Our data suggest that the small airways epithelium is prone to inflammation and lesions as well as constituting a point of virus entry into the pulmonary vasculature. The use of relevant models of the human respiratory tract, such as B/S-ALI, is critical for understanding NiV-related lung pathogenesis and identifying the underlying mechanisms allowing human-to-human transmission.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000441
2016-05-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/5/1077.html?itemId=/content/journal/jgv/10.1099/jgv.0.000441&mimeType=html&fmt=ahah

References

  1. Baggiolini M. , Imboden P. , Detmers P. . ( 1992;). Neutrophil activation and the effects of interleukin-8/neutrophil-activating peptide 1 (IL-8/NAP-1). Cytokines 4: 1–17 [PubMed].[CrossRef]
    [Google Scholar]
  2. Baseler L. , de Wit E. , Scott D. P. , Munster V. J. , Feldmann H. . ( 2015;). Syrian hamsters (Mesocricetus auratus) oronasally inoculated with a Nipah virus isolate from Bangladesh or Malaysia develop similar respiratory tract lesions. Vet Pathol 52: 38–45 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bossart K. N. , Rockx B. , Feldmann F. , Brining D. , Scott D. , LaCasse R. , Geisbert J. B. , Feng Y. R. , Chan Y. P. , other authors . ( 2012;). A Hendra virus G glycoprotein subunit vaccine protects African green monkeys from Nipah virus challenge. Sci Transl Med 4: 146ra107 [CrossRef] [PubMed].
    [Google Scholar]
  4. Chong H. T. , Kunjapan S. R. , Thayaparan T. , Tong J. M. G. , Petharunam V. , Jusoh M. R. , Tan C. T. . ( 2002;). Nipah encephalitis outbreak in Malaysia, clinical features in patients from Seremban. Can J Neurol Sci 29: 83–87 [CrossRef] [PubMed].
    [Google Scholar]
  5. Chua K. B. , Bellini W. J. , Rota P. A. , Harcourt B. H. , Tamin A. , Lam S. K. , Ksiazek T. G. , Rollin P. E. , Zaki S. R. , other authors . ( 2000;). Nipah virus: a recently emergent deadly paramyxovirus. Science 288: 1432–1435 [CrossRef] [PubMed].
    [Google Scholar]
  6. Chua K. B. , Lam S. K. , Goh K. J. , Hooi P. S. , Ksiazek T. G. , Kamarulzaman A. , Olson J. , Tan C. T. . ( 2001;). The presence of Nipah virus in respiratory secretions and urine of patients during an outbreak of Nipah virus encephalitis in Malaysia. J Infect 42: 40–43 [CrossRef] [PubMed].
    [Google Scholar]
  7. Clahsen T. , Schaper F. . ( 2008;). Interleukin-6 acts in the fashion of a classical chemokine on monocytic cells by inducing integrin activation, cell adhesion, actin polymerization, chemotaxis, and transmigration. J Leukoc Biol 84: 1521–1529 [CrossRef] [PubMed].
    [Google Scholar]
  8. de Wit E. , Prescott J. , Falzarano D. , Bushmaker T. , Scott D. , Feldmann H. , Munster V. J. . ( 2014;). Foodborne transmission of nipah virus in Syrian hamsters. PLoS Pathog 10: e1004001 [CrossRef] [PubMed].
    [Google Scholar]
  9. DeBuysscher B. L. , de Wit E. , Munster V. J. , Scott D. , Feldmann H. , Prescott J. . ( 2013;). Comparison of the pathogenicity of Nipah virus isolates from Bangladesh and Malaysia in the Syrian hamster. PLoS Negl Trop Dis 7: e2024 [CrossRef] [PubMed].
    [Google Scholar]
  10. Eaton B. T. , Broder C. C. , Wang L. F. . ( 2005;). Hendra and Nipah viruses: pathogenesis and therapeutics. Curr Mol Med 5: 805–816 [CrossRef] [PubMed].
    [Google Scholar]
  11. Escaffre O. , Borisevich V. , Carmical J. R. , Prusak D. , Prescott J. , Feldmann H. , Rockx B. . ( 2013;). Henipavirus pathogenesis in human respiratory epithelial cells. J Virol 87: 3284–3294 [CrossRef] [PubMed].
    [Google Scholar]
  12. Gerlach R. L. , Camp J. V. , Chu Y. K. , Jonsson C. B. . ( 2013;). Early host responses of seasonal and pandemic influenza A viruses in primary well-differentiated human lung epithelial cells. PLoS One 8: e78912 [CrossRef] [PubMed].
    [Google Scholar]
  13. Goh K. J. , Tan C. T. , Chew N. K. , Tan P. S. , Kamarulzaman A. , Sarji S. A. , Wong K. T. , Abdullah B. J. , Chua K. B. , Lam S. K. . ( 2000;). Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N Engl J Med 342: 1229–1235 [CrossRef] [PubMed].
    [Google Scholar]
  14. Gurley E. S. , Montgomery J. M. , Hossain M. J. , Bell M. , Azad A. K. , Islam M. R. , Molla M. A. , Carroll D. S. , Ksiazek T. G. , other authors . ( 2007;). Person-to-person transmission of Nipah virus in a Bangladeshi community. Emerg Infect Dis 13: 1031–1037 [CrossRef] [PubMed].
    [Google Scholar]
  15. Harit A. K. , Ichhpujani R. L. , Gupta S. , Gill K. S. , Lal S. , Ganguly N. K. , Agarwal S. P. . ( 2006;). Nipah/Hendra virus outbreak in Siliguri, West Bengal, India in 2001. J Med Res 123: 553–560 [PubMed].
    [Google Scholar]
  16. Hooper P. , Zaki S. , Daniels P. , Middleton D. . ( 2001;). Comparative pathology of the diseases caused by Hendra and Nipah viruses. Microbes Infect 3: 315–322 [CrossRef] [PubMed].
    [Google Scholar]
  17. Hossain M. J. , Gurley E. S. , Montgomery J. M. , Bell M. , Carroll D. S. , Hsu V. P. , Formenty P. , Croisier A. , Bertherat E. , other authors . ( 2008;). Clinical presentation of nipah virus infection in Bangladesh. Clin Infect Dis 46: 977–984 [CrossRef] [PubMed].
    [Google Scholar]
  18. Imai T. , Hieshima K. , Haskell C. , Baba M. , Nagira M. , Nishimura M. , Kakizaki M. , Takagi S. , Nomiyama H. , other authors . ( 1997;). Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91: 521–530 [CrossRef] [PubMed].
    [Google Scholar]
  19. Lam E. , Ramke M. , Warnecke G. , Schrepfer S. , Kopfnagel V. , Dobner T. , Heim A. . ( 2015;). Effective apical infection of differentiated human bronchial epithelial cells and induction of proinflammatory chemokines by the highly pneumotropic human adenovirus type 14p1. PLoS One 10: e0131201 [CrossRef] [PubMed].
    [Google Scholar]
  20. Levitzky M. G. . ( 2013;). Pulmonary Physiology , 8th edn. New York: McGraw-Hill;.
    [Google Scholar]
  21. Lo M. K. , Rota P. A. . ( 2008;). The emergence of Nipah virus, a highly pathogenic paramyxovirus. J Clin Virol 43: 396–400 [CrossRef] [PubMed].
    [Google Scholar]
  22. Lo M. K. , Miller D. , Aljofan M. , Mungall B. A. , Rollin P. E. , Bellini W. J. , Rota P. A. . ( 2010;). Characterization of the antiviral and inflammatory responses against Nipah virus in endothelial cells and neurons. Virology 404: 78–88 [CrossRef] [PubMed].
    [Google Scholar]
  23. Luster A. D. , Leder P. . ( 1993;). IP-10, a -C-X-C- chemokine, elicits a potent thymus-dependent antitumor response in vivo. J Exp Med 178: 1057–1065 [CrossRef] [PubMed].
    [Google Scholar]
  24. Matrosovich M. N. , Matrosovich T. Y. , Gray T. , Roberts N. A. , Klenk H. D. . ( 2004;). Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci U S A 101: 4620–4624 [CrossRef] [PubMed].
    [Google Scholar]
  25. Mercer R. R. , Russell M. L. , Roggli V. L. , Crapo J. D. . ( 1994;). Cell number and distribution in human and rat airways. Am J Respir Cell Mol Biol 10: 613–624 [CrossRef] [PubMed].
    [Google Scholar]
  26. Mitchell H. , Levin D. , Forrest S. , Beauchemin C. A. , Tipper J. , Knight J. , Donart N. , Layton R. C. , Pyles J. , other authors . ( 2011;). Higher level of replication efficiency of 2009 (H1N1) pandemic influenza virus than those of seasonal and avian strains: kinetics from epithelial cell culture and computational modeling. J Virol 85: 1125–1135 [CrossRef] [PubMed].
    [Google Scholar]
  27. Mounts A. W. , Kaur H. , Parashar U. D. , Ksiazek T. G. , Cannon D. , Arokiasamy J. T. , Anderson L. J. , Lye M. S. , Nipah Virus Nosocomial Study Group . ( 2001;). A cohort study of health care workers to assess nosocomial transmissibility of Nipah virus, Malaysia, 1999. J Infect Dis 183: 810–813 [CrossRef] [PubMed].
    [Google Scholar]
  28. Paton N. I. , Leo Y. S. , Zaki S. R. , Auchus A. P. , Lee K. E. , Ling A. E. , Chew S. K. , Ang B. , Rollin P. E. , other authors . ( 1999;). Outbreak of Nipah-virus infection among abattoir workers in Singapore. Lancet 354: 1253–1256 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ren D. , Nelson K. L. , Uchakin P. N. , Smith A. L. , Gu X. X. , Daines D. A. . ( 2012;). Characterization of extended co-culture of non-typeable Haemophilus influenzae with primary human respiratory tissues. Exp Biol Med (Maywood) 237: 540–547 [CrossRef] [PubMed].
    [Google Scholar]
  30. Rock J. R. , Randell S. H. , Hogan B. L. . ( 2010;). Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech 3: 545–556 [CrossRef] [PubMed].
    [Google Scholar]
  31. Rockx B. , Sheahan T. , Donaldson E. , Harkema J. , Sims A. , Heise M. , Pickles R. , Cameron M. , Kelvin D. , Baric R. . ( 2007;). Synthetic reconstruction of zoonotic and early human severe acute respiratory syndrome coronavirus isolates that produce fatal disease in aged mice. J Virol 81: 7410–7423 [CrossRef] [PubMed].
    [Google Scholar]
  32. Rockx B. , Brining D. , Kramer J. , Callison J. , Ebihara H. , Mansfield K. , Feldmann H. . ( 2011;). Clinical outcome of henipavirus infection in hamsters is determined by the route and dose of infection. J Virol 85: 7658–7671 [CrossRef] [PubMed].
    [Google Scholar]
  33. Rockx B. , Winegar R. , Freiberg A. N. . ( 2012;). Recent progress in henipavirus research: molecular biology, genetic diversity, animal models. Antiviral Res 95: 135–149 [CrossRef] [PubMed].
    [Google Scholar]
  34. Tan C. T. , Tan K. S. . ( 2001;). Nosocomial transmissibility of Nipah virus. J Infect Dis 184: 1367 [CrossRef] [PubMed].
    [Google Scholar]
  35. Taub D. D. , Lloyd A. R. , Conlon K. , Wang J. M. , Ortaldo J. R. , Harada A. , Matsushima K. , Kelvin D. J. , Oppenheim J. J. . ( 1993;). Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J Exp Med 177: 1809–1814 [CrossRef] [PubMed].
    [Google Scholar]
  36. Thelen M. . ( 2001;). Dancing to the tune of chemokines. Nat Immunol 2: 129–134 [CrossRef] [PubMed].
    [Google Scholar]
  37. Valbuena G. , Halliday H. , Borisevich V. , Goez Y. , Rockx B. . ( 2014;). A human lung xenograft mouse model of Nipah virus infection. PLoS Pathog 10: e1004063 [CrossRef] [PubMed].
    [Google Scholar]
  38. Weissenbach M. , Clahsen T. , Weber C. , Spitzer D. , Wirth D. , Vestweber D. , Heinrich P. C. , Schaper F. . ( 2004;). Interleukin-6 is a direct mediator of T cell migration. Eur J Immunol 34: 2895–2906 [CrossRef] [PubMed].
    [Google Scholar]
  39. Wong K. T. , Shieh W. J. , Kumar S. , Norain K. , Abdullah W. , Guarner J. , Goldsmith C. S. , Chua K. B. , Lam S. K. , other authors . ( 2002;). Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am J Pathol 161: 2153–2167 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000441
Loading
/content/journal/jgv/10.1099/jgv.0.000441
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error